Амины с органическими кислотами. Химические свойства аминов

Органические основания - такое название часто используют в химии для соединений, являющихся производными аммиака. Атомы водорода в его молекуле замещены на углеводородные радикалы. Речь идет об аминах - соединениях, повторяющих химические свойства аммиака. В нашей статье мы познакомимся с общей формулой аминов и их свойствами.

Строение молекулы

В зависимости от того, сколько атомов водорода замещены углеводородными радикалами, различают первичные, вторичные и третичные амины. Например, метиламин - первичный амин, в котором водородную частицу заменили группой -CH 3 . Структурная формула аминов - R-NH 2 , ее можно использовать, чтобы определить состав органического вещества. Примером вторичного амина может быть диметиламин, имеющий следующий вид: NH 2 -NH-NH 2 . В молекулах третичных соединений все три атома водорода аммиака замещены углеводородными радикалами, например, триметиламин имеет формулу (NH 2) 3 N. Строение аминов влияет на их физические и химические свойства.

Физическая характеристика

Агрегатное состояние аминов зависит от того, какова молярная масса радикалов. Чем она меньше, тем ниже удельный вес вещества. Низшие вещества класса аминов представлены газами (например, метиламин). Они имеют хорошо выраженный запах аммиака. Средние амины - это слабо пахнущие жидкости, а соединения с большой массой углеводородного радикала - твердые вещества без запаха. Растворимость аминов также зависит от массы радикала: чем она больше, тем вещество хуже растворяется в воде. Таким образом, строение аминов определяет их физическое состояние и характеристику.

Химические свойства

Характеристика веществ зависит в основном от превращений аминогруппы, в которой ведущая роль отводится ее неподеленной электронной паре. Так как органические вещества класса аминов являются производными аммиака, то они способны к реакциям, характерным для NH 3 . Например, соединения растворяются в воде. Продуктами такой реакции будут вещества, проявляющие свойства гидроксидов. Например, метиламин, атомный состав которого подчиняется общей формуле предельных аминов R-NH 2 , с водой образует соединение - гидроксид метиламмония:

CH 3 - NH 2 + H 2 O = OH

Органические основания взаимодействуют с неорганическими кислотами, при этом в продуктах обнаруживается соль. Так, метиламин с соляной кислотой дает хлорид метиламмония:

СН 3 -NH 2 + HCl -> Cl

Реакции аминов, общая формула которых - R-NH 2 , с органическими кислотами проходят с замещением атома водорода аминогруппы сложным анионом кислотного остатка. Они называются реакциями алкилирования. Как и в реакции с нитритной кислотой, ацильные производные могут образовывать только первичные и вторичные амины. Триметиламин и другие третичные амины к таким взаимодействиям не способны. Добавим также, что алкилирование в аналитической химии применяют для разделения смесей аминов, оно также служит качественной реакцией на первичные и вторичные амины. Среди циклических аминов важное место принадлежит анилину. Его добывают из нитробензола восстановлением последнего водородом в присутствии катализатора. Анилин является исходным сырьем для производства пластмасс, красителей, взрывчатых и лекарственных веществ.

Особенности третичных аминов

Третичные производные аммиака отличаются своими химическими свойствами от одно- или двухзамещенных соединений. Например, они могут взаимодействовать с галогенопроизводными соединениями предельных углеводородов. В результате образуются соли тетраалкиламмония. Окись серебра вступает в реакцию с третичными аминами, при этом амины переходят в гидроксиды тетраалкиламмония, являющиеся сильными основаниями. Апротонные кислоты, например трифторид бора, с триметиламином способны образовывать комплексные соединения.

Качественная проба на первичные амины

Реактивом, с помощью которого можно обнаружить одно- или двухзамещенные амины, может служить азотистая кислота. Так как она не существует в свободном состоянии, для ее получения в растворе сначала проводят реакцию между разбавленной хлоридной кислотой и нитритом натрия. Затем добавляют растворенный первичный амин. Состав его молекулы можно выразить с помощью общей формулы аминов: R-NH 2. Этот процесс сопровождается появлением молекул непредельных углеводородов, которые можно определить с помощью реакции с бромной водой или раствором перманганата калия. Качественной можно считать и изонитрильную реакцию. В ней первичные амины взаимодействуют с хлороформом в среде с избыточной концентрацией анионов гидроксогрупп. В результате происходит образование изонитрилов, обладающих неприятным специфическим запахом.

Особенности реакции вторичных аминов с нитритной кислотой

Технология получения реактива HNO 2 описана нами выше. Затем к раствору, содержащему реактив, прибавляют органическое производное аммиака, содержащее два углеводородных радикала, например, диэтиламин, молекула которого соответствует общей формуле вторичных аминов NH 2 -R-NH 2 . В продуктах реакции находим нитросоединение: N-нитрозодиэтиламин. Если на него подействовать хлоридной кислотой, то соединение разлагается на хлоридную соль исходного амина и хлористый нитрозил. Добавим еще, что третичные амины не способны к реакциям с азотистой кислотой. Это объясняется следующим фактом: нитритная кислота относится к слабым кислотам, и ее соли при взаимодействии с аминами, содержащими три углеводородных радикала, в водных растворах полностью гидролизуются.

Способы получения

Амины, общая формула которых - R-NH 2 , можно добыть восстановлением соединений, содержащих азот. Например, это может быть восстановление нитроалканов в присутствии катализатора - металлического никеля - при нагревании до +50 ⁰C и при давлении до 100 атм. Нитроэтан, нитропропан или нитрометан в результате этого процесса превращаются в амины. Вещества данного класса можно получить и восстановлением водородом соединений группы нитрилов. Данная реакция проходит в органических растворителях, при этом необходимо присутствие никелевого катализатора. Если в качестве восстановителя используют металлический натрий, в этом случае процесс осуществляется в спиртовом растворе. Приведем в качестве примеров еще два метода: аминирование галогеноалканов и спиртов.

В первом случае образуется смесь аминов. Аминирование спиртов осуществляется следующим способом: смесь паров метанола или этанола с аммиаком пропускают над окисью кальция, выполняющей роль катализатора. Образующиеся первичные, вторичные и третичные амины обычно можно разделить разгонкой.

В нашей статье мы изучили строение и свойства азотсодержащих органических соединений - аминов.

Амины - органические производные аммиака, содержащие аминогруппу NH 2 и органический радикал. В общем случае формула амина представляет собой формулу аммиака, в которой атомы водорода заменены на углеводородный радикал.

Классификация

  • По тому, сколько в аммиаке атомов водорода заменено радикалом, различают первичные амины (один атом), вторичные, третичные. Радикалы могут быть одинаковыми или разнотипными.
  • Амин может содержать не одну аминогруппу, а несколько. По этой характеристике их делят на моно, ди-, три-, … полиамины.
  • По типу радикалов, связанных с атомом азота, различают алифатические (не содержащие циклических цепей), ароматические (содержащие цикл, самый известный - анилин с бензольным кольцом), смешанные (жиро-ароматические, содержащие циклический и нециклический радикалы).

Свойства

В зависимости от длины цепочки атомов в органическом радикале, амины могут быть газообразными (три-, ди-, метиламин, этиламин), жидкими или твердыми веществами. Чем длиннее цепь, тем тверже вещество. Простейшие амины водорастворимы, но по мере перехода к более сложным соединениям водорастворимость уменьшается.

Газообразные и жидкие амины - вещества с выраженным запахом аммиака. Твердые практически лишены запаха.

Амины проявляют в химических реакциях сильные оснóвные свойства, в результате взаимодействия с неорганическими кислотами получаются алкиламмониевые соли. Реакция с азотистой кислотой является качественной для этого класса соединений. В случае первичного амина получается спирт и газообразный азот, со вторичным - нерастворимый желтый осадок с выраженным запахом нитрозодиметиламина; с третичным реакция не идет.

Реагируют с кислородом (горят на воздухе), галогенами, карбоновыми кислотами и их производными, альдегидами, кетонами.

Практически все амины, за редким исключением, ядовиты. Так, самый знаменитый представитель класса, анилин, легко проникает через кожный покров, окисляет гемоглобин, угнетает ЦНС, нарушает обмен веществ, что может привести даже к смерти. Токсичны для человека и пары.

Признаки отравления:

Одышка,
- синюшность носа, губ, кончиков пальцев,
- частое дыхание и усиленное сердцебиение, потеря сознания.

Первая помощь:

Смыть хим.реактив ватой со спиртом,
- обеспечить доступ к чистому воздуху,
- вызвать «Скорую помощь».

Применение

В качестве отвердителя эпоксидных смол.

Как катализатор в химпроме и металлургии.

Сырье для получения полиамидных искусственных волокон, например, нейлона.

Для изготовления полиуретанов, пенополиуретанов, полиуретановых клеев.

Исходный продукт для получения анилина - основы для анилиновых красителей.

Для производства лекарственных средств.

Для изготовления фенолформальдегидных смол.

Для синтеза репеллентов, фунгицидов, инсектицидов, пестицидов, минеральных удобрений, ускорителей вулканизации резины, антикоррозионных реактивов, буферных растворов.

Как добавка к моторным маслам и топливам, сухое горючее.

Для получения светочувствительных материалов.

Уротропин используется как пищевая добавка, а также ингредиент косметических средств.

В нашем интернет-магазине можно купить реактивы, относящиеся к классу аминов.

Метиламин

Первичный алифатический амин. Востребован как сырье для производства лекарств, красителей, пестицидов.

Диэтиламин

Вторичный амин. Применяется в качестве исходного продукта при получении пестицидов, лекарств (например, новокаина), красителей, репеллентов, добавок к топливу и моторным маслам. Из него изготавливают реактивы для защиты от коррозии, для обогащения руд, отверждения эпоксидных смол, ускорения процессов вулканизации.

Триэтиламин

Третичный амин. Используется в химпроме в качестве катализатора при производстве резин, эпоксидных смол, пенополиуретанов. В металлургии - катализатор отвердения в безобжиговых процессах. Сырье в органическом синтезе лекарств, минеральных удобрений, средств для борьбы с сорняками, красок.

1-бутиламин

Третбутиламин, соединение, в котором с азотом связана трет-бутильная органическая группа. Вещество применяется при синтезе усилителей вулканизации резины, лекарств, красителей, дубильных веществ, препаратов против сорняков и насекомых.

Уротропин (гексамин)

Полициклический амин. Востребованное в экономике вещество. Используется как пищевая добавка, лекарство и компонент лекарств, ингредиент косметических средств, буферных растворов для аналитической химии; как сухое горючее, отвердитель полимерных смол, в синтезе фенолформальдегидных смол, фунгицидов, взрывчатых веществ, средств для защиты от коррозии.

Амины - это органические соединения, в которых атом водорода (может и не один) замещен на углеводородный радикал. Все амины делят на:

  • первичные амины ;
  • вторичные амины ;
  • третичные амины .

Есть еще аналоги солей аммония - четвертичные соли типа [R 4 N ] + Cl - .

В зависимости от типа радикала амины могут быть:

  • алифатические амины;
  • ароматические (смешанные) амины.

Алифатические предельные амины.

Общая формула C n H 2 n +3 N .

Строение аминов.

Атом азота находится в sp 3 -гибридизации. На 4-ой негибридной орбитали находится неподеленная пара электронов, которая обуславливает основные свойства аминов:

Элекронодонорные заместители повышают электронную плотность на атоме азота и усиливают основные свойства аминов, по этой причин вторичные амины являются более сильными основаниями, чем первичные, т.к. 2 радикала у атома азота создают большую электронную плотность, чем 1.

В третичных атомах играет важную роль пространственный фактор: т.к. 3 радикала заслоняют неподеленную пару азота, к которой сложно «подступиться» другим реагентам, основность таких аминов меньше, чем первичных или вторичных.

Изомерия аминов.

Для аминов свойственна изомерия углеродного скелета, изомерия положения аминогруппы:

Как называть амины?

В названии обычно перечисляют углеводородные радикалы (в алфавитном порядке) и добавляют окончание -амин:

Физические свойства аминов.

Первые 3 амина - газы, средние члены алифатического ряда - жидкости, а высшие - твердые вещества. Температура кипения у аминов выше, чем у соответствующих углеводородов, т.к. в жидкой фазе в молекуле образуются водородные связи.

Амины хорошо растворимы в воде, по мере роста углеводородного радикала растворимость падает.

Получение аминов.

1. Алкилирование аммиака (основной способ), который происходит при нагревании алкилгалогенида с аммиаком:

Если алкилгалогенид в избытке, то первичный амин может вступать в реакцию алкилирования, превращаясь во вторичный или третичный амин:

2. Восстановление нитросоединений:

Используют сульфид аммония (реакция Зинина ), цинк или железо в кислой среде, алюминий в щелочной среде или водород в газовой фазе.

3. Восстановление нитрилов. Используют LiAlH 4 :

4. Ферментатичное декарбоксилирование аминокислот:

Химические свойства аминов.

Все амины - сильные основания, причем алифатические более сильные, чем аммиак.

Водные растворы имеют щелочной характер.

Аминами называются производные аммиака, в которых один, два иди три атома водорода заменены на углеводородные радикалы.

В зависимости от числа углеводородных радикалов различают первичные , вторичные и третичные амины. Существуют также четвертичные аммониевые соли и основания , представляющие собой производные иона аммония, в кото­ром все четыре атома водорода замещены органическими радикалами. По природе радикала амины подразделяются на алифатические и ароматические.

Для аминов более употребительны названия, построенные по радикально-­функциональной , а не по заместительной номенклатуре.

Родовое название амины относится к соединениям RNH 2 , RR"NH и RR"R"N, которые являются первичными, вторичными и третичными аминами соответственно. В более широком смысле к аминам относятся и соединения, содержащие группу -NH- в цикле.

Названия первичных аминов образуются добавлением суффикса -амин к названию радикала R (способ а) или к названию родоначальной структуры (способ б). Так, соединение CH 3 CH 2 CH 2 NH 2 будет называться пропиламин (а) или пропанамин-1 (б). Способ а обычно используют для производных простых соединений, а способ б - для сложных циклических соединений. В способе а применяется принцип замещения атома водорода в молекуле аммиака, который формально является родоначальной структурой. По сути он похож на принцип радикально-функциональной номенклатуры, но в прави­лах ИЮПАК относится к заместительной.

В тех случаях, когда группа -NH 2 не является старшей, она обозначается префиксом амино -:

Некоторые амины сохраняют тривиальные названия:

Первичные диамины и полиамины, в которых все аминогруппы присо­единены к алифатической цепи или циклическому ядру, называют путем при­бавления суффиксов -диамин , -триамин и т. д. к названию родоначальной структуры или многовалентного радикала. Тривиальное название «бензидин» сохраняется.

Симметричные вторичные и третичные амины называют, присоединяя ум­ножающие приставки ди- или три- к названиям алкильных радикалов с суф­фиксом -амин. Несимметричные соединения получают названия как Ж-заме­щенные производные первичных аминов, причем за исходный первичный амин принимают соединение с более сложным радикалом:

Радикалы аминов RNH-, R 2 N-, RR"N- называют как замещенные ами­ногруппы или к тривиальным названиям аминов добавляют букву о:

Низшие алифатические амины - газы или жидкости с за­пахом, похожим на запах аммиака. Высшие гомологи алифатических аминов и ароматические амины представляют собой жидкости или твердые вещества. Амины образуют слабые водородные связи и не­прочные ассоциаты, поэтому их температуры кипения ниже, чем у спиртов и карбоновых кислот с тем же числом атомов углерода, но выше, чем у альдеги­дов или простых эфиров. Низшие алифатические амины хорошо растворимы в воде, с увеличением числа углеводородных радикалов и их длины раствори­мость снижается. Ароматические амины плохо растворимы в воде.

Представители.

Анилин - C 6 H 5 NH 2 - бесцветная жидкость со слабым запахом, похожим на запах бензола, при стоянии на воздухе довольно быстро окисляется и приобре­тает желто-коричневую окраску и неприятный запах. Токсичен.

Более половины производимого анилина расходуется на производство стабилизаторов и ускорителей вулканизации каучуков. Второй по значимости сферой его применения является производство изоцианатов, используемых для получения полиуретанов. Применяют также в производстве красителей различных классов, лекарственных средств, фотоматериалов и средств защиты растений. В нашей стране анилин используют для получения капролактама.

N–метиланилин (монометиланилин) - С 6 H 5 NHCH 3 - представляет собой маслянистую жидкость желтого цвета с плотностью 0,98 г/см 3 , растворимую в бензинах, спиртах и эфирах. Главной задачей монометиланилина является получение необходимых детонационных свойств бензина при его производстве. Кроме того, при добавлении его в топливо регулируется октановое число продукта и его экологичность.

Диметиланилин - C 6 H 5 N(CH 3) 2 - третичный жирноароматический амин, бесцветная жидкость. Применяется в производстве полиэфирных смол и в органическом синтезе. Диметиланилин применяют в синтезе красителей (малахитовый зелёный, метиленовый голубой и др.), взрывчатых веществ и др.

Толуидины - CH 3 C 6 H 4 NH 2 - бесцветные кристаллические соединения со своеобразными запахами, на воздухе быстро окисляются и темнеют. Получают восстановлением нитротолуолов. Применяют в производстве красителей раз­ных классов (трифенилметановых, азокрасителей, тиазиновых, сернистых), а также для получения крезолов. Толуидины, как и некоторые другие аромати­ческие амины, ядовиты и канцерогенны.

Фенетидины (этоксианилины, аминофенетолы) - NH 2 –C 6 H 4 –OC 2 H 3 (орто-, пара- и мета-) - представляют жидкости. Применяют в производстве азотолов; n-фенетидин также в синтезе лекарственныз средствв (фенацетина, риванола). Фенетидины вызывают отравление при попадании на кожу и вдыхании паров, поражают печень и почки.

Дифенилами́н ((N-фенил)-анилин) - (С 6 Н 5) 2 NН - бесцветные кристаллы, темнеющие на свету. Дифениламин - исходный продукт в производстве антиоксидантов для полимеров; стабилизатор и флегматизатор термо- и атмосферостойкости нитратов целлюлозы, в том числе пироксилиновых порохов; промежуточный продукт в синтезе триарилметановых и азокрасителей, инсектицидов; ингибитор коррозии мягких сталей. Используется в аналитической химии для обнаружения ионов, как окислительно-восстановительный индикатор.

Спектральные характеристики.

ИК-спектроскопия . Положение полос поглощения аминогрупп в спектре определяется условиями съемки спектров (в твердом виде, жидком состоянии, в растворах или газовой фазе) и зависит от того, является ли аминогруппа сво­бодной (неассоциированной) или она участвует в образовании меж- и внутри­молекулярных водородных связей.

Полосы поглощения, обусловленные валентными колебаниями связей N-Н, проявляются в ИК-спектрах в области 3500-3200 см -1 . Первичные амины имеют две полосы поглощения. Более высокочастотная обусловлена асимметричными валентными колебаниями N-Н, менее высокочастотная - симметричными. В спектрах аминов в разбавленных растворах в инертных растворителях эти две узкие полосы наблюдаются при 3500 и 3400 см -1 . Вторичные амины имеют одну полосу поглощения, соответствующую валент­ным колебаниям N-Н. Для алифатических аминов в инертных растворителях она наблюдается в области 3350-3310 см -1 , в спектрах смешанных аминов Аг-NH-Alk полоса поглощения N-Н расположена при более высоких час­тотах 3450 см -1 .

Если аминогруппа участвует в меж- или внутримолекулярной водородной связи (в твердом или жидком состоянии, в концентрированных растворах), то полосы поглощения валентных колебаний N-Н смещаются в низкочастот­ную сторону. Однако это смещение не столь значительно. Ассоциированные первичные амины дают полосы поглощения в областях 3420-3330 см -1 (v asNH 2) и 3330-3250 см -1 (v sNH 2), вторичные - в об­ласти 3300-3150 см -1 . При неполной ассоциации можно наблюдать одновре­менно полосы свободной и ассоциированной аминогруппы, поэтому в облас­ти 3500-3200 см -1 может быть более двух полос, характерных для первичных аминов, и более одной полосы, характерной для вторичных.

Деформационные колебания аминогруппы наблюдаются в области 1650-1500 и 950-650 см -1 . Первичные амины имеют полосы поглощения плоских деформационных колебаний средней интенсивности 1650-1580 см -1 , вторич­ные - слабой интенсивности в интервале 1600-1500 см -1 . При образовании водородных связей частоты деформационных колебаний повышаются.

Амины имеют также полосы поглощения валентных колебаний С-N. В алифатических аминах этим колебаниям соответствует поглощение в облас­ти 1250-1020 см -1 средней интенсивности, в ароматических аминах - интен­сивное поглощение в интервале частот 1340-1260 см -1 .

Взаимодействие аминов с кислотами вызывает сильные изменения в спектрах. В солях первичных аминов колебаниям N-Н соответствует широ­кая сильная полоса в области 3100-2600 см -1 . Соли вторичных и третичных аминов имеют интенсивное поглощение в области 2700-2250 см -1 . Соли ами­нов можно дополнительно идентифицировать по деформационным колебани­ям. Соли первичных аминов поглощают в области 1600-1575 и 1550-1500 см -1 , соли вторичных аминов - в диапазоне 1620-1560 см -1 .

Спектроскопия ПМР . Сигналы протонов группы NH алифатических и циклических аминов наблюдаются в интервале 0,5-3,0 м. д., ароматических аминов - при 3,0-5,0 м. д. Поскольку амины могут образовывать водородные связи, положение сигналов зависит от концентрации амина, природы раство­рителя и температуры. Протоны NH-группы могут обмениваться на дейтерии, и при добавлении к образцу тяжелой воды D 2 O эти сигналы исчезают.

Аминогруппа, находящаяся в сопряжении с бензольным кольцом, повы­шает электронную плотность в орто- и пара -положениях кольца, что приводит к экранированию соответствующих протонов и смешению их сигналов в более сильное поле по сравнению с бензолом. В спектрах ПМР как аминов сигналы ароматиче­ских протонов представляют собой сложные мультиплеты.

Электронная спектроскопия . Алифатические амины в УФ- и видимой об­ласти не поглощают . Сопряжение аминогрупп с бензольным кольцом приводит к значительному батохромному смещению полос поглощения бензола с увели­чением их интенсивности. Полагают, что наряду с локальным π→π*-переходом бензольного кольца в данное поглощение вносит вклад переход с переносом заряда от донорной группы в кольцо (анилин. Анилин в ближней УФ-области имеет две полосы поглощения - 230 нм и 280 нм.

    Амины: кислотно-основные свойства; нуклеофильные свойства – реакции алкилирования аминов и аммиака, четвертичные аммониевые соли, раскрытие –оксидного цикла аминами с образованием аминоспиртов.

Химические свойства.

В молекулах алифатических аминов атом азота находится в состоянии sp 3 -гибридизации, поэтому они, подобно аммиаку, имеют пирамидальную конфигурацию. Например, углы связей С-N-С в триметиламине равны 108° и очень близки к величинам углов Н-N-Н в молекуле аммиака.

Теоретически вторичные и третичные амины с разными углеводородными радикалами могут существовать в виде энантиомеров, однако обычные алифа­тические и ароматические амины до сих пор не выделены в виде индивидуаль­ных энантиомеров. Это объясняется тем, что молекулы аммиака и аминов по­стоянно претерпевают пирамидальную инверсию, которую следует рассматри­вать как быстрое обращение конфигурации. Инверсия осуществляется через тригональное переходное состояние (в центре схемы):

В молекулах ароматических аминов неподеленная пара электронов атома азота находится в сопряжении с π -электронами ароматического кольца, вслед­ствие чего амплитуда, с которой совершается пирамидальная инверсия, значи­тельно уменьшается.

Четвертичные аммониевые соли, имеющие четыре разных радикала, могут быть разделены на индивидуальные энантиомерные формы, т. е. эти формы обладают конфигурационной устойчивостью. Так, аллилбензилметилфениламмонийиодид выделен в виде индивидуальных энантиомеров, каждый из ко­торых обладает оптической активностью:

Основные свойства.

Амины, как и аммиак, проявляют основные свойства, что обусловлено на­личием в их молекулах атома азота с неподеленной парой электронов. При взаимодействии с кислотами амины превращаются в аммониевые соли :

Соли аминов в отличие от других ониевых солей гидролитически устойчи­вы, хорошо растворимы в воде, легко кристаллизуются из водных растворов и, как правило, более устойчивы, чем свободные основания. Многие лекарствен­ные вещества, относящиеся к классу аминов, применяются в виде солей с ми­неральными и реже органическими кислотами.

Алифатические амины - сильные основания . Водные растворы аминов имеют ще­лочную среду по лакмусу:

Можно предположить, что третичные амины с тремя алкильными замес­тителями, обладающими +I-эффектом, будут более сильными основаниями, чем вторичные и первичные амины. Однако стерические факторы, опреде­ляющие доступность основного центра для атаки протоном, оказывают проти­воположное влияние. Чем больше у атома азота радикалов и чем они разветвленнее, тем сильнее экранирована неподеленная пара электронов атома азота и затруднено ее взаимодействие с протоном. Поэтому самыми сильными осно­ваниями должны быть первичные и вторичные амины со сравнительно корот­кими и неразветвленными радикалами. Сольватация (взаимодействие молеку­лы растворенного вещества с молекулами растворителя) оказывает на основ­ность влияние, сходное с влиянием стерических факторов, поскольку с увели­чением числа и разветвленности углеводородных радикалов уменьшается способность катиона замещенного аммония (сопряженной кислоты) связы­вать молекулы растворителя.

Многие экспериментальные данные не укладываются в изложенные выше сравнительно простые схемы. Таким образом, чисто умозрительные рассуждения не могут служить достоверной основой для предсказания сравни­тельной основности алифатических аминов. На практике можно руководствоваться тем, что значения рК ВН+ большин­ства алифатических аминов укладываются в сравнительно узкий интервал: от 10,6 до 11,2. Такое небольшое различие в основности не обес­печивает существенного преимущества какому-нибудь из аминов в конкурент­ной реакции протонирования.

Основность ароматических аминов существенно ниже, чем у аминов али­фатического ряда. Это объясняется тем, что неподеленная пара электронов атома азота вступает в р,π-сопряжение с электронами бензольного кольца:

Заместители в кольце существенным образом влияют на основность: электроноднорные заместители ее увеличивают, а электроноакцепторные снижают.

Если из-за стерических затруднений неподеленная пара электронов выво­дится из сопряжения, то основность амина значительно возрастает. Так, объ­емные алкильные радикалы N,N-диизопропиланилина не могут расположить­ся в одной плоскости с бензольным кольцом из-за взаимного отталкивания с атомами водорода в орто-положениях, поэтому его основность (pK BH + 7,4) значительно выше, чем у анилина. Аналогичного рода стерические затрудне­ния возникают у N,N-диалкиланилинов, имеющих одновременно заместители в положениях 2 и 6. В молекуле 1,8-бис(диметиламино)нафталина обе диметиламиногруппы также не могут расположиться в одной плоскости с ароматиче­ской системой, и это соединение обладает удивительно высокой основностью (рKвн + 12,4), его протонированная форма устойчива за счет того, что протон прочно удерживается неподеленными парами электронов двух атомов азота.

Кислотные свойства.

NH-Кислотные свойства аминов выражены в значительно меньшей степени, чем основные. Для алифатических и ароматических первичных и вторичных аминов рК A имеют значения 30-35. Таким образом, более слабыми кислотами, чем амины, являются разве что алканы. Амины проявляют кислотные свойства только в присутствии очень сильных оснований , таких, как, например, металлоорганические соединения, и превращаются при этом в амиды металлов (не путать с амидами карбоновых и сульфоновых кислот!):

Амиды щелочных металлов являются очень сильными основаниями и используются в органическом синтезе.

Нуклеофильные свойства.

Нуклеофильные свойства аминов, как и основные, обусловлены наличием неподеленной пары электронов атома азота. Некоторые реакции, в которых амины участвуют в качестве нуклеофильных реагентов, будут далее и были ранее. Это - алкилирование аминов [(1)], взаимодействие с карбонильными соединениями [(2)] и ацилирование производными карбоновых кислот [(3)]:

Алкилирование. Амины, как и аммиак, подвергаются алкилированию га­логеноалканами. Алкилирование аммиака приводит к образованию первично­го амина, из первичных аминов образуются вторичные, из вторичных - тре­тичные, из третичных - четвертичные аммониевые соли. Образующаяся в хо­де реакции замещенная аммониевая соль обменивается протоном с аммиаком или амином, поэтому в реакции алкилирования получается смесь аминов с разным числом алкильных радикалов:

Реакцию алкилирования редко удается остановить на какой-то отдельной стадии ввиду того, что различия в нуклеофильности и основности первичных, вторичных и третичных аминов не настолько значительны, чтобы повлиять на различие в скоростях реакций алкилирования аминов разной степени замеще­ния.

В промышленности аммиак и низшие амины алкилируют низшими спирта­ми в газовой фазе при температуре 300-500 °С над оксидами алюминия, крем­ния, тория, хрома и др. При этом образуются смеси первичных, вторичных и третичных аминов. Этим способом получают в основном метил- и этиламины:

Реакции аминов с эпоксидами. При взаимодействии первичных и вторич­ных аминов с эпоксидами (оксиранами) происходит нуклеофильное раскры­тие напряженного трехчленного α-оксидного цикла и образуются β-аминоспирты. В замещенных эпоксидах нуклеофильная атака происходит, как пра­вило, на наименее замещенный атом углерода оксидного цикла (правило Красуского ):

Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.

Понравилась статья? Поделиться с друзьями: