Общий конечный путь в физиологии. Интегративная и координационная деятельность нервной клетки

В структурной организации нервных сетей встречается такая ситуация, когда на одном нейроне сходятся несколько афферентных терминалей из других отделов ЦНС. Это явление принято называть конвергенцией в нейронных связях. Так, например, к одному мотонейрону подходит около 6000 коллатералей аксонов первичных афферентов, спинальных интернейронов, нисходящих путей из стволовой части мозга и коры. Все эти терминальные окончания образуют на мотонейроне возбуждающие и тормозные синапсы и формируют своеобразную «воронку», суженная часть которой представляет общий моторный выход. Данная воронка является анатомическим образованием, определяющим один из механизмов координационной функции спинного мозга

Суть этого механизма была раскрыта английским физиологом Ч. Шеррингтоном, который сформулировал принцип общего конечного пути. По Ч. Шеррингтону, количественное преобладание чувствительных и других приходящих волокон над двигательными создает неизбежное столкновение импульсов в общем конечном пути, которым являются группа мотонейронов и иннервируемые ими мышцы. В результате этого столкновения достигается торможение всех возможных степеней свободы двигательного аппарата, кроме одной, в направлении которой протекает рефлекторная реакция, вызванная максимальной стимуляцией одного из афферентных входов.

Рассмотрим случай с одновременным раздражением рецептивных полей чесательного и сгибательного рефлексов, которые реализуются идентичными группами мышц. Импульсы, идущие от этих рецептивных полей, приходят к одной и той же группе мотонейронов, и здесь в узком месте воронки за счет интеграции синаптических влияний осуществляется выбор в пользу сгибательного рефлекса, вызванного более сильным болевым раздражением. Принцип общего конечного пути, как один из принципов координации, действителен не только для спинного мозга, он применим для любого этажа ЦНС, в том числе для моторной коры.

Вопрос 56

ДОМИНАНТА (от лат. dominans, род. падеж dominantis - господствующий) (физиол.), преобладающая (доминирующая) система связанных между собой нервных центров, временно определяющая характер ответной реакции организма на любые внеш. или внутр. раздражители. Осн. положения учения о Д., как общем принципе работы нервных центров, сформулировал А. А. Ухтомский в 1911- 1923. Он выдвинул представление о «доминирующей центральной констелляции», создающей скрытую готовность организма к определ. деятельности при одновременном торможении посторонних рефлекторных актов. Д. возникает на основе господствующего мотивационного возбуждения. В связи с этим выделяют пищевую, половую, оборонит, и др. виды Д. Напр., у самцов лягушек в весенний период в связи с повышением концентрации половых гормонов в крови наблюдается сильный «обнимательный рефлекс* и раздражение поверхности их тела в это время вместо того, чтобы вызвать соответств. оборонит, рефлекс, усиливает напряжение мышц-сгибателей передних конечностей. Д. как вектор поведения служит физиол. основой ряда сложных психич. явлений. Биологический энциклопедический словарь. Гл. ред. М.С. Гиляров. М.: Сов. энциклопедия, 1986.

Вопрос 57

Какое значение ретикулярной формации в восприятии информации?

Человек познает мир с помощью информации (сигналов), которую получает, перерабатывает и с помощью которой принимает решения и формирует поведение. Восприятие информации связано с ретикулярной формацией.

Ретикулярная формация и кора больших полушарий головного мозга тесно связаны между собой. Между ними действует связь: кора-ретикулярная формация-кора.

Все импульсы, идущие от органов чувств, передаются в кору больших полушарий головного мозга, а из нее - в ретикулярную формацию, где возбуждение бы накапливается. При необходимости (усиленная физическая работа, контрольная работа и т.д.) ретикулярная формация передает возбуждение в кору больших полушарий и активизирует ее. Часто ее сравнивают с центральным рубильником, с помощью которого включают или выключают энергию. Эта своеобразная «электростанция» мозга работает на полную мощность, когда человек активно работает, мыслит или охвачена эмоциями. Ретикулярная формация получает информацию от всех органов чувств, внутренних и других органов, оценивает ее и выборочно (только нужную) передает в лимбическую систему и кору больших полушарий головного мозга. Она регулирует уровень возбудимости и тонуса различных отделов нервной системы, включая корой конечного мозга, играет важную роль в процессах сознания, памяти, восприятия, мышления, сна, бодрствования, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма.

Итак, ретикулярная формация выполняет функцию своеобразного фильтра, который позволяет важным для организма сенсорным системам активировать кору мозга, но не пропускает привычные для него сигналы или сигналы, которые часто повторяются. Она является «информационным индикатором», который определяет важность информации, поступающей в мозг. Благодаря такой способности ретикулярная формация защищает мозг от избыточной информации. Впрочем функция самой ретикулярной формации находится под контролем больших полушарий головного мозга.

Вопрос 58

аминоспецифични системы мозга
Нейроны, медиаторами которых моноамины (серотонин, норадреналин и дофамин), участвующих в объединении различных структур мозга в единое функциональное образование. Тела этих нейронов располагаются преимущественно в структурах ствола мозга, а отростки простираются почти до всех отделов ЦНС, начиная от спинного мозга и к коре больших полушарий.
Тела серотонинергических нейронов располагаются у средней линии ствола мозга, начиная от продолговатого мозга до нижних отделов среднего мозга.Отростки этих нейронов поступают практически ко всем отделам промежуточного мозга, переднего мозга, обнаружены они также в мозжечке и спинном мозге. К серотонину обнаружены три типа рецепторов (М, Б, Т). В большинстве структур мозга возбуждение серотонинергических нейронов вызывает торможение различной степени выраженности: тормозятся рефлексы спинного и продолговатого мозга, подавляется передача возбуждения через ядра таламуса, подавляется активность нейронов ретикулярной формации и коры больших полушарий. Благодаря своим многочисленным связям с различными структурами мозга серотонинергическая система участвует в формировании памяти, регуляции сна и бодрствования, двигательной активности, сексуальном поведении, выражении агрессивного состояния, терморегуляции, болевой рецепции.
Тела норадренергических нейронов расположены отдельными группами в продолговатом мозге и мосту, особенно их много в голубой пятну. Голубая пятно связана почти со всеми областями мозга: с различными структурами среднего мозга, таламуса и таких отделов переднего, как миндалина, гиппокамп, поясная извилина и новая кора. В ЦНС есть четыре типа адренорецепторов: а1, а2, Р1, Р2. а-рецепторы сконцентрированы в основном в коре, гипоталамусе, гиппокампе. р-рецепторы находятся в коре, стриатума и гиппокампе. Но местоположение, как и функциональное назначение, этих рецепторов существенно отличается. Так, а1-рецепторы располагаются на пресинаптической мембране и, очевидно, обеспечивают регуляцию выхода норадреналина, т.е. оказывают модулирующее влияние. В отличие от этого, Р1-рецепторы локализованы на постсинаптической мембране, и через их посредство норадреналин осуществляет свое влияние на нейроны. а2-, Р2-рецепторы обнаружены на терминалях серотонинергических нейронов, где модулируют выделение этого медиатора, а также на нейро-глиальных клетках.
Возбуждение норадренергических структур сопровождается торможением активности различных нейронов, в том числе и серотонинергических, угнетением, или наоборот, облегчением передачи афферентной информации на разных уровнях ЦНС.
Тела дофаминергической системы лежат в вентральных отделах среднего мозга, их особенно много в черной субстанции. Их отростки поступают как к базальным двигательных ядер (стриопалидарнои системы), так и к лимбической системы, гипоталамуса, лобной доли коры больших полушарий. В силу этого, дофаминергические система участвует в регуляции движений, формировании ощущения боли, положительных и отрицательных эмоций. К дофамина есть два типа рецепторов, при взаимодействии с которыми дофамин «запускает» различные внутриклеточные посредники: Б1-рецепторы связаны с аденилатцик-Лазо (ферментом, стимулирует образование цАМФ), а Б2-рецепторы не связанные с этим ферментом.
В последние годы широко изучается участие моноаминергических систем мозга в возникновении психических заболеваний человека. Возможно, что в основе таких заболеваний, как шизофрения, циклотимия, лежат нарушения активности моноаминергических систем. Многие препараты, имеющие положительный лечебный эффект, влияют на обмен катехоламинов в соответствующих центрах мозга.

Вопрос 59

Лимбическая система.
Лимбическая система (синоним: лимбический комплекс, висцеральный мозг, риненцефалон, тименцефалон) - комплекс структур среднего, промежуточного и конечного мозга, участвующих в организации висцеральных, мотивационных и эмоциональных реакций организма.
Основную часть структур лимбической системы составляют образования головного мозга, относящиеся к древней, старой и новой коре, расположенные преимущественно на медиальной поверхности полушарий большого мозга, а также многочисленные подкорковые структуры, тесно с ними связаны.
На начальном этапе развития позвоночных животных лимбическая система обеспечивала все важнейшие реакции организма (пищевые, ориентировочные, половые и др.), которые формируются на основе древнейшего дистантного чувства - обоняния. Именно обоняние выступило в качестве интегрирующего фактора многих целостных функций организма и объединило в единый морфофункциональное комплекс структуры конечного, промежуточного и среднего мозга. Ряд структур лимбической системы на основе восходящих и нисходящих проводящих путей образует замкнутые системы.
Морфологически лимбическая система у высших млекопитающих включает области старой коры (поясной, или лимбическую, извилину, гиппокамп), некоторые образования новой коры (височные и лобные отделы, промежуточную лобно-височную зону), подкорковые структуры (бледный шар, хвостатое ядро, скорлупу, миндалевидное тело, перегородку, гипоталамус, ретикулярную формацию среднего мозга, неспецифические ядра таламуса).
Структуры лимбической системы участвуют в регуляции важнейших биологических потребностей, связанных с получением энергии, и пластических материалов, поддержанием водного и солевого баланса, оптимизацией температуры тела и др.
Экспериментально доказано, что эмоциональное поведение животного при стимуляции некоторых участков лимбической системы проявляется главным образом реакциями агрессии (гнева), убегания (страха) или наблюдаются смешанные формы поведения, например оборонительные реакции. Эмоции в отличие от мотиваций возникают в ответ на внезапные изменения среды и выполняют роль тактической задачи поведения. Поэтому они скоротечны и факультативные. Длительные немотивированные изменения эмоционального поведения могут быть следствием органической патологии или действия некоторых нейролептиков. В различных отделах лимбической системы открыты центры «удовольствия» и «недовольство», объединенные в системы «награды» и «наказания». При стимуляции системы «наказания» животные ведут себя так же, как при страхе или боли, а при стимуляции системы «награда» стремятся восстановить раздражение и осуществляют его самостоятельно, если им представляется такая возможность. Эффекты награды непосредственно не связаны с регуляцией биологических мотиваций или торможением отрицательных эмоций и скорее всего представляют неспецифический механизм положительного подкрепления, деятельность которого воспринимается как удовольствие или награда. Эта общая неспецифическая система положительного подкрепления подключена к разным мотивационным механизмам и обеспечивает направленность поведения на основе принципа «лучше - хуже».
Висцеральные реакции при воздействии на лимбическую систему, как правило, является специфическим компонентом соответствующего типа поведения. Так, при стимуляции центра голода в латеральных отделах гипоталамуса наблюдаются обильное слюноотделение, усиление моторики и секреторной активности желудочно-кишечного тракта, при провокации половых реакций - эрекция, эякуляция и т.д., а в целом на фоне различных типов мотивационного и эмоционального поведения регистрируются изменения дыхания, частоты сердечных сокращений и величины АД, секреции АКТГ, катехоламинов, других гормонов и медиаторов,
Для объяснения принципов интегративной деятельности лимбической системы выдвинуто представление о циклическом характере движения процессов возбуждения по замкнутой сети структур, включающих гиппокамп, сосцевидные тела, свод мозга, передние ядра таламуса, поясную извилину - так называемый круг Пейпси. Далее цикл восстанавливается. Этот «транзитный» принцип организации функций лимбической системы подтверждается рядом фактов.Например, пищевые реакции удается вызвать при стимуляции латерального ядра гипоталамуса, латеральной преоптической области и некоторых других структур.Тем не менее несмотря на множественность локализации функций удалось установить ключевые, или пейсмекерного, механизмы, выключение которых ведет к полному выпадению функции.
В настоящее время проблема консолидации структур в определенную функциональную систему решается с позиций нейрохимии. Показано, что многие образования лимбической системы содержат клетки и терминалы, секретирующие несколько типов биологически активных веществ. Среди них наиболее изучены моноаминергических нейроны, образующие три системы: дофаминергическую, норадренергическую и серотонинергическую. Нейрохимические родство отдельным структур лимбической системы во многом предопределяет степень их участия в том или ином типе поведения. Деятельность системы награды обеспечивается норадренергических и дофаминергических механизмами; блокада соответствующих клеточных рецепторов препаратами из ряда фенотиазинов или бугарофенонов сопровождается эмоциональной и двигательной заторможенностью, а при избыточных дозах - депрессией и двигательными нарушениями, близкими к синдрома паркинсонизма. В регуляции сна и бодрствования, рядом с моноаминергических механизмами, участвуют ГАМК-эргические и нейромодуляторную механизмы, специфически реагируют на гамма-аминомасляная кислота (ГАМК) и пептид дельта-сна. В механизмах боли ключевую роль играют эндогенная опиатная система и морфиноподобных вещества - эндорфины и энкефалины.
Нарушение функций лимбической системы проявляются при различных заболеваниях (травмах мозга, интоксикациях, нейроинфекциях, сосудистой патологии, эндогенных психозах, неврозах) и бывают чрезвычайно разнообразными по клинической картине. В зависимости от локализации и объема поражения эти расстройства могут иметь отношение к мотивациям, эмоциям, вегетативным функциям и сочетаться в разных пропорциях. Низкие пороги судорожной активности лимбической системы предопределяют разные формы эпилепсии: большие и малые формы судорожных припадков, автоматизмы, изменения сознания (деперсонализация и дереализация), вегетативные пароксизмы, которым предшествуют или сопутствуют разные формы изменения настроения в сочетании с обонятельными, вкусовыми и слуховыми галлюцинациями.

Одно и то же рефлекторное движение может быть вызвано большим числом различных раздражений, действующих на разные рецепторные аппараты. Например, рефлекторное сокращение мышц сгибателей лапы кошки может быть получено при раздражении кожи на боку, при рефлексе почесывания, при растяжении мышц вследствие раздражения приорецепторов, при раздражении рецептивного поля сгибания данной конечности или рецептивного поля разгибания противоположной конечности.

Можно, наконец, вызвать сгибание конечности звуковым или зрительным раздражением, если оно прежде сочеталось с рефлексомсгибания (условный сгибательный рефлекс). Все это показывает, что один тот же моторный нейрон входит в состав многих .

Эффекторные нейроны образуют общий конечный путь самых разнообразных по своему происхождению рефлексов и могут быть связаны с любыми рецепторными аппаратами организма. Связь эта осуществляется через проточные нейроны, на которых оканчиваются аксоны большинства рецепторных нейронов. Общее же число рецепторных нейронов превышает в 5 раз количество эффекторных нейронов.

Рефлексы, дуги которых имеют общий конечный путь , принято подразделять на союзные , или аллированные , и антагонистические . Первые взаимно подкрепляют, усиливают друг друга, вторые оказывают друга тормозящее влияние, как бы конкурируют за захват общего конечного пути.

Примером алиированных рефлексов могут служить рефлексы сгибания конечности, высыпаемые у собаки раздражением двух участков кожи, расположенных на боку на расстояния в несколько сантиметров друг от друга. При одновременном таком раздражении сгибательный рефлекс усиливается. Взаимное усиление рефлексов можно видеть и при действии раздражителей на различные по природе рецепторы. Так, одновременное раздражение тактильного (возбуждаемого давлением) и вкусового (химического) рецепторов полости рта сопровождается большим слюноотделительным эффектом, чем каждое из этих раздражений, примененное порознь.

Взаимное усиление рефлексов обусловлено тем, что афферентный пульсы, вызывающие эти рефлексы, конвергируют на одних и тех же промежуточных и эффекторных нейронах, вследствие чего возбуждения суммируются друг с другом.

Примером антагонистических рефлексов могут служить соотношения рефлекса чесания и рефлекса сгибания конечности у собаки в ответ на болевое раздражение. Если во время рефлекса чесания на кожу конечности, участвующей в его осуществлении,нанести сильное болевое раздражение, то возникнет сгибание лапы, и рефлекс чесания уступает место сгибательному рефлексу.

Оба эти рефлекса имеют общий конечный путь - мотонейроны, иннервирующие сгибательные мышцы, но афферентные и промежуточные нейроны у них различны; при возбуждении оборонительного центра промежуточные нейроны, участвующие в рефлексе чесания, затормаживаются. Из этого следует, что «борьба» между афферентными импульсами при антагонистических рефлексах за общий конечный путь осуществляется по механизму сопряженного торможения, которое как бы ограждает общий конечный путь от посторонних афферентных влияний.

Исход «борьбы» антагонистических рефлексов зависит от силы приложенных раздражений и функционального состояния нервных центров. Некоторые раздражения - те, которые вызывают боль, голод, половой акт, имеющие особо важное физиологическое значение, легче вызывают реакции и оказываются господствующими.

В условиях физиологической нормы работа всех органов и систем тела является согласованной: на воздействия из внешней и внутренней среды организм реагирует как единое целое. Согласованное проявление отдельных рефлексов, обеспечивающих выполнение целостных рабочих актов, носит название координации .

Явления координации играют важную роль в деятельности двигательного аппарата. Координация таких двигательных актов, как ходьба или бег, обеспечивается взаимосвязанной работой нервных центров.

За счет координированной работы нервных центров осуществляется совершенное приспособление организма к условиям существования. Это происходит не только за счет деятельности двигательного аппарата, но и за счет изменений вегетативных функций организма (процессов дыхания, кровообращения, пищеварения, обмена веществ и т. д.).

Установлен ряд общих закономерностей - принципов координации : 1) принцип конвергенции; 2) принцип иррадиации возбуждения; 3) принцип реципрокности; 4) принцип последовательной смены возбуждения торможением и торможения возбуждением; 5) феномен "отдачи"; 6) цепные и ритмические рефлексы; 7) принцип общего конечного пути; 8) принцип обратной связи; 9) принцип доминанты.

Разберем некоторые из них.

Принцип конвергенции . Этот принцип установлен английским физиологом Шеррингтоном. Импульсы, приходящие в центральную нервную систему по различным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же вставочным и эфферентным нейронам. Конвергенция нервных импульсов объясняется тем, что афферентных нейронов в несколько раз больше, чем эфферентных, поэтому афферентные нейроны образуют на телах и дендритах эфферентных и вставочных нейронов многочисленные синапсы.

Принцип иррадиации . Импульсы, поступающие в центральную нервную систему при сильном и длительном раздражении рецепторов, вызывают возбуждение не только данного рефлекторного центра, но и других нервных центров. Это распространение возбуждения в центральной нервной системе получило название иррадиации. Процесс иррадиации связан с наличием в центральной нервной системе многочисленных ветвлений аксонов и особенно дендритов нервных клеток и цепей вставочных нейронов, которые объединяют друг с другом различные нервные центры.

Принцип реципрокности (сопряженности) в работе нервных центров. Это явление было изучено И. М. Сеченовым, Н. Е. Введенским, Шеррингтоном. Суть его заключается в том, что при возбуждении одних нервных центров деятельность других может затормаживаться. Принцип реципрокности был показан по отношению к нервным центрам мышц-антагонистов - сгибателей и разгибателей конечностей. Наиболее отчетливо он проявляется у животных с удаленным головным мозгом и сохраненным спинным (спинальное животное). Если раздражать у спинального животного (кошка) кожу конечностей, отмечается сгибательный рефлекс данной конечности, а на противоположной стороне в это время наблюдается рефлекс разгибания. Описанные явления связаны с тем, что при возбуждении центра сгибания одной конечности происходит реципрокное торможение центра разгибания этой же конечности. На симметричной стороне имеются обратные взаимоотношения: возбужден центр разгибателей и заторможен центр сгибателей. Только при такой взаимосочетанной (реципрокной) иннервации возможен акт ходьбы.

Может происходить сопряженное, реципрокное торможение и других рефлексов. Под влиянием головного мозга реципрокные отношения могут изменяться. Человек или животное в случае необходимости может сгибать обе конечности, совершать прыжки и т. д.

Реципрокные взаимоотношения центров головного мозга определяют возможность человека овладеть сложными трудовыми процессами и не менее сложными специальными движениями, совершающимися при плавании, акробатических упражнениях и пр.

Принцип общего конечного пути . Этот принцип связан с особенностью строения центральной нервной системы. Эта особенность, как уже указывалось, состоит в том, что афферентных нейронов в несколько раз больше, чем эфферентных, в результате чего различные афферентные импульсы сходятся к общим выходящим путям. Количественные соотношения между нейронами схематически можно представить в виде воронки: возбуждение вливается в центральную нервную систему через широкий раструб (афферентные нейроны) и вытекает из нее через узкую трубку (эфферентные нейроны). Общими путями могут быть не только конечные эфферентные нейроны, но и вставочные.

Импульсы, сходящиеся в общем пути, "конкурируют" друг с другом за использование этого пути. Так достигается упорядочение рефлекторного ответа, соподчинение рефлексов и затормаживание менее существенных. Вместе с тем организм получает возможность реагировать на различные раздражения из внешней и внутренней среды при помощи сравнительно небольшого количества исполнительных органов.

Принцип обратной связи . Этот принцип изучен И. М. Сеченовым, Шеррингтоном, П. К. Анохиным и рядом других исследователей. При рефлекторном сокращении скелетных мышц возбуждаются проприорецепторы. От проприорецепторов нервные импульсы вновь поступают в центральную нервную систему. Этим контролируется точность совершаемых движений. Подобные афферентные импульсы, возникающие в организме в результате рефлекторной деятельности органов и тканей (эффекторов), получили название вторичных афферентных импульсов, или обратной связи .

Обратные связи могут быть положительными и отрицательными. Положительные обратные связи способствуют усилению рефлекторных реакций, отрицательные - их угнетению.

За счет положительных и отрицательных обратных связей осуществляется, например, регуляция относительного постоянства величины артериального давления.

При повышении артериального давления происходит возбуждение механорецепторов дуги аорты, каротидных синусов. Импульсы поступают в сосудодвигательный центр и центр сердечной деятельности, тонус сосудов рефлекторно снижается, одновременно замедляется деятельность сердца и величина артериального давления уменьшается. При понижении артериального давления раздражение механорецепторов указанных рефлексогенных зон вызывает рефлекторное повышение тонуса сосудов, увеличение работы сердца. В этом случае величина артериального давления возрастает.

Вторичные афферентные импульсы (обратные связи) играют также важную роль в регуляции других вегетативных функций: дыхания, пищеварения, выделения.

Принцип доминанты . Принцип доминанты сформулирован А. А. Ухтомским. Этот принцип играет важную роль в согласованной работе нервных центров. Доминанта - это временно господствующий очаг возбуждения в центральной нервной системе, определяющий характер ответной реакции организма на внешние и внутренние раздражения.

Доминантный очаг возбуждения характеризуется следующими основными свойствами: 1) повышенной возбудимостью; 2) стойкостью возбуждения; 3) способностью к суммированию возбуждения; 4) инерцией - доминанта в виде следов возбуждения может длительно сохраняться и после прекращения вызвавшего ее раздражения.

Доминантный очаг возбуждения способен притягивать (привлекать) к себе нервные импульсы из других нервных центров, менее возбужденных в данный момент. За счет этих импульсов активность доминанты еще больше увеличивается, а деятельность других нервных центров подавляется.

Доминанты могут быть экзогенного и эндогенного происхождения. Экзогенная доминанта возникает под влиянием факторов окружающей среды. Например, при чтении интересной книги человек может не слышать звучащую в это время по радио музыку.

Эндогенная доминанта возникает под влиянием факторов внутренней среды организма, главным образом гормонов и других физиологически активных веществ. Например, при понижении содержания питательных веществ в крови, особенно глюкозы, происходит возбуждение пищевого центра, что является одной из причин пищевой установки организма животных и человека.

Доминанта может быть инертной (стойкой), и для ее разрушения необходимо возникновение нового более мощного очага возбуждения.

Доминанта лежит в основе координационной деятельности организма, обеспечивая поведение человека и животных в окружающей среде, а также эмоциональных состояний, реакций внимания. Формирование условных рефлексов и их торможение также связано с наличием доминантного очага возбуждения.

Спинной мозг

Особенности строения спинного мозга . Спинной мозг является наиболее древним и примитивным отделом центральной нервной системы. В центральной части спинного мозга находится серое вещество. Оно состоит преимущественно из нервных клеток и образует выступы - задние, передние и боковые рога . В прилежащих спинальных ганглиях располагаются афферентные нервные клетки. Длинный отросток афферентной клетки находится на периферии и образует воспринимающее окончание (рецептор), а короткий заканчивается у клеток задних рогов. В передних рогах расположены эфферентные клетки (мотонейроны), аксоны которых иннервируют скелетные мышцы; в боковых рогах - нейроны вегетативной нервной системы. В сером веществе находятся многочисленные вставочные нейроны. Среди них обнаружены особые тормозные нейроны - клетки Реншоу , названные так по имени автора, который впервые их описал. Вокруг серого вещества располагается белое вещество спинного мозга. Оно образовано нервными волокнами восходящих и нисходящих путей , соединяющих различные участки спинного мозга друг с другом, а также спинной мозг с головным (рис. 75).

Функции спинномозговых корешков . Связь спинного мозга с периферией осуществляется посредством нервных волокон, проходящих в спинномозговых корешках; по ним к спинному мозгу поступают афферентные импульсы и проходят от него на периферию эфферентные импульсы. По обеим сторонам спинного мозга располагается 31 пара передних и задних корешков.

Функции спинномозговых корешков были выяснены при помощи методов перерезки и раздражения.

Выдающийся шотландский анатом и физиолог Белл и французский исследователь Мажанди установили, что при односторонней перерезке передних корешков спинного мозга отмечается паралич конечностей этой же стороны, чувствительность же сохраняется полностью. Перерезка задних корешков приводит к утрате чувствительности, двигательная функция при этом сохраняется.

Таким образом, было показано, что афферентные импульсы поступают в спинной мозг через задние корешки (чувствительные), эфферентные импульсы выходят через передние корешки (двигательные).

Функции и центры спинного мозга . Спинной мозг выполняет две функции: рефлекторную и проводниковую .

Рефлекторная функция спинного мозга . В спинной мозг поступают афферентные импульсы от рецепторов кожи, проприорецепторов двигательного аппарата, интерорецепторов кровеносных сосудов, пищеварительного тракта, выделительных и половых органов. Эфферентные импульсы от спинного мозга идут к скелетным мышцам (за исключением мышц лица), в том числе к дыхательным - межреберным и диафрагме. Кроме того, от спинного мозга по вегетативным нервным волокнам импульсы поступают ко всем внутренним органам, кровеносным сосудам, потовым железам и т. д.

Мотонейроны спинного мозга возбуждаются за счет афферентных импульсов, поступающих к ним от различных рецепторов организма. Однако уровень активности мотонейронов зависит не только от этой афферентации, но и от сложных внутрицентральных взаимоотношений. Большая роль в регуляции деятельности мотонейронов принадлежит нисходящим влияниям головного мозга (коры больших полушарий, ретикулярной формации ствола мозга, мозжечка и др.), а также внутриспинальным воздействиям многочисленных вставочных нейронов. Среди вставочных нейронов особая роль принадлежит клеткам Реншоу. Эти клетки образуют на мотонейронах тормозные синапсы. При возбуждении клеток Реншоу активность мотонейронов притормаживается, что предупреждает перевозбуждение и контролирует их работу. Деятельность мотонейронов спинного мозга контролируется также потоком импульсов, идущих от проприорецепторов мышц (обратная афферентация).

Спинальные рефлексы, т. е. рефлексы, присущие самому спинному мозгу, можно изучить в чистом виде только после отделения спинного мозга от головного (спинальное животное). Первым следствием поперечной перерезки между продолговатым и спинным мозгом является спинальный шок, который длится от нескольких минут до нескольких недель в зависимости от уровня развития центральной нервной системы. Спинальный шок проявляется резким падением возбудимости и угнетением рефлекторных функций всех нервных центров, расположенных ниже места перерезки. В возникновении спинального шока большое значение имеет устранение нервных импульсов, поступающих к спинному мозгу из вышележащих отделов центральной нервной системы, в том числе от нейронов ретикулярной формации ствола мозга.

По прекращении спинального шока постепенно восстанавливаются рефлекторная деятельность скелетных мышц, величина кровяного давления, рефлексы мочеиспускания, дефекации и ряд половых рефлексов. У спинального животного не восстанавливаются произвольные движения, чувствительность и температура тела, а также дыхание. Спинальные животные могут жить только при условии искусственного дыхания. Следовательно, центры, регулирующие эти функции, находятся в вышележащих отделах центральной нервной системы .

Рефлекторные центры спинного мозга . В шейном отделе спинного мозга находятся центр диафрагмального нерва и центр сужения зрачка, в шейном и грудном отделах - центры мышц верхних конечностей, мышц груди, спины и живота, в поясничном отделе - центры мышц нижних конечностей, в крестцовом отделе - центры мочеиспускания, дефекации и половой деятельности, в боковых рогах грудного и поясничного отделов спинного мозга - центры потоотделения и спинальные сосудодвигательные центры.

Изучая нарушения деятельности тех или других групп мышц или отдельных функций у больных людей, можно установить, какой отдел спинного мозга поврежден или функция какого отдела нарушена.

Рефлекторные дуги отдельных рефлексов проходят через определенные сегменты спинного мозга. Возбуждение, возникшее в рецепторе, по центростремительному нерву поступает в соответствующий отдел спинного мозга. Центробежные волокна, выходящие из спинного мозга в составе передних корешков, иннервируют строго определенные участки тела. Схема на рис. 76 показывает, какими сегментами иннервируется каждый участок тела.

Проводниковая функция спинного мозга . Через спинной мозг проходят восходящие и нисходящие пути.

Восходящие нервные пути передают информацию от тактильных, болевых, температурных рецепторов кожи и от проприорецепторов мышц через нейроны спинного мозга и другие отделы центральной нервной системы к мозжечку и коре головного мозга.

Нисходящие нервные пути (пирамидный и экстрапирамидный) связывают кору головного мозга, подкорковые ядра и образования ствола мозга с мотонейронами спинного мозга. Они обеспечивают влияние высших отделов центральной нервной системы на деятельность скелетных мышц.

Продолговатый мозг

Непосредственным продолжением спинного мозга у всех позвоночных животных и человека является продолговатый мозг.

Продолговатый мозг и варолиев мост (мост мозга) объединяют под общим названием заднего мозга. Задний мозг вместе со средним и промежуточным мозгом образует ствол мозга. В состав ствола мозга входит большое количество ядер, восходящих и нисходящих путей. Важное функциональное значение имеет находящаяся в стволе мозга, в частности в заднем мозге, ретикулярная формация .

В продолговатом мозге по сравнению со спинным мозгом нет четкого сегментарного распределения серого и белого вещества.

Скопление нервных клеток приводит к образованию ядер, являющихся центрами более или менее сложных рефлексов. Из 12 пар черепных нервов, связывающих головной мозг с периферией организма - его рецепторами и эффекторами, восемь пар (V-XII) берут свое начало в продолговатом мозге.

Продолговатый мозг выполняет две функции - рефлекторную и проводниковую.

Рефлекторная функция продолговатого мозга . В продолговатом мозге находятся центры как относительно простых, так и более сложных рефлексов. За счет продолговатого мозга осуществляются: 1) защитные рефлексы (мигание, слезоотделение, чиханье, кашлевой рефлекс и рефлекс акта рвоты); 2) установочные рефлексы, обеспечивающие тонус мускулатуры, необходимый для поддержания позы и осуществления рабочих актов; 3) лабиринтные рефлексы, способствующие правильному распределению мышечного тонуса между отдельными группами мышц и установке той или иной позы тела; 4) рефлексы, связанные с функциями систем дыхания, кровообращения, пищеварения.

Проводниковая функция продолговатого мозга . Через продолговатый мозг проходят восходящие пути от спинного мозга к головному и нисходящие пути, связывающие кору больших полушарий со спинным мозгом. Продолговатый мозг и варолиев мост имеют собственные проводящие пути, соединяющие ядро и оливу вестибулярного нерва с мотонейронами спинного мозга.

Через восходящие пути и черепные нервы продолговатый мозг получает импульсы от рецепторов мышц лица, шеи, конечностей и туловища, от кожи лица, слизистых оболочек глаз, носовой и ротовой полости, от рецепторов слуха, вестибулярного аппарата, рецепторов гортани, трахеи, легких, интерорецепторов пищеварительного аппарата и сердечно-сосудистой системы.

Функции продолговатого мозга были изучены на бульбарных животных, у которых поперечным разрезом продолговатый мозг отделен от среднего. Следовательно, жизнь бульбарных животных осуществляется за счет деятельности спинного и продолговатого мозга. У таких животных отсутствуют произвольные движения, отмечается потеря всех видов чувствительности, нарушается регуляция температуры тела (теплокровное животное превращается в холоднокровное). У бульбарных животных сохраняются рефлекторные реакции организма и осуществляется регуляция функций внутренних органов.

Рефлекторные центры продолговатого мозга . В продолговатом мозге располагается ряд жизненно важных центров. К ним относятся дыхательный, сердечно-сосудистый и пищевой центры. За счет деятельности этих центров осуществляется регуляция дыхания, кровообращения и пищеварения. Таким образом, основная биологическая роль продолговатого мозга заключается в обеспечении постоянства состава внутренней среды организма.

За счет связей с проприорецепторами продолговатый мозг выполняет роль регулятора тонуса скелетной мускулатуры, прежде всего обеспечивая тоническое напряжение мышц-разгибателей, предназначенных для преодоления силы тяжести организма.

Продолговатый мозг регулирует работу спинного мозга. Эта координационная функция направлена на функциональное объединение всех сегментов спинного мозга, на обеспечение условий для целостной его деятельности. Продолговатый мозг осуществляет более тонкие формы приспособительных реакций организма к внешней среде по сравнению со спинным мозгом.

Средний мозг

К образованиям среднего мозга относят ножки мозга, ядра III (глазодвигательный) и IV (блоковый) пар черепных нервов, четверохолмие, красные ядра и черное вещество. В ножках мозга проходят восходящие и нисходящие нервные пути.

В строении среднего мозга полностью утрачиваются сегментарные признаки. В среднем мозге клеточные элементы образуют сложные скопления в виде ядер. Ядерные образования относятся непосредственно к среднему мозгу, а также к входящей в его состав ретикулярной формации.

Передние бугры четверохолмия получают импульсы от сетчатой оболочки глаз. В ответ на эти сигналы осуществляется регуляция просвета зрачка и аккомодация глаза. Аккомодация - приспособление глаза к ясному видению разноудаленных предметов за счет изменения кривизны хрусталика.

Задние бугры четверохолмия получают импульсы от ядер слуховых нервов, расположенных в продолговатом мозге. Благодаря этому происходит рефлекторная регуляция тонуса мышц среднего уха, а у животных - поворот ушной раковины к источнику звука. Таким образом, при участии передних и задних бугров четверохолмия осуществляются установочные, ориентировочные рефлекторные реакции на световые и звуковые раздражения (движения глаз, поворот головы и даже туловища в сторону светового или звукового раздражителя). При разрушении ядер четверохолмия зрение и слух сохраняются, но отсутствуют ориентировочные реакции на свет и звук.

С деятельностью бугров четверохолмия тесно связана функция ядер III и IV пар черепных нервов, возбуждение которых определяет движение глаз вверх, вниз, в стороны, а также сведение (конвергенция) и разведение глазных осей при переносе взора с удаленных предметов на близкие и обратно,

Красные ядра участвуют в регуляции мышечного тонуса и в проявлении установочных рефлексов, обеспечивающих сохранение правильного положения тела в пространстве. При отделении заднего мозга от среднего тонус мышц-разгибателей повышается, конечности животного напрягаются и вытягиваются, голова запрокидывается. Следовательно, у здорового животного и человека красные ядра несколько притормаживают тонус мышц-разгибателей.

Черное вещество также регулирует мышечный тонус и поддержание позы, участвует в регуляции актов жевания, глотания, кровяного давления и дыхания, т. е. деятельность черного вещества, как и красных ядер, тесно связана с работой продолговатого мозга.

Таким образом, средний мозг регулирует тонус мышц, соответствующим образом его распределяет, что является необходимым условием координированных движений. Средний мозг регулирует ряд вегетативных функций организма (жевание, глотание, кровяное давление, дыхание). За счет среднего мозга расширяется, становится многообразнее рефлекторная деятельность организма (ориентировочные рефлексы на звуковые и зрительные раздражения).

Образования ствола мозга обеспечивают правильное распределение тонуса между отдельными группами мышц. Рефлексы, обеспечивающие мышечный тонус, получили название тонических . В осуществлении этих рефлексов участвуют мотонейроны спинного мозга, вестибулярные ядра продолговатого мозга, мозжечок, образования среднего мозга (красные ядра). В целостном организме проявление тонических рефлексов контролируется клетками моторной зоны коры больших полушарий.

Тонические рефлексы возникают при изменении положения тела и головы в пространстве за счет возбуждения проприорецепторов мышц, рецепторов вестибулярного аппарата внутреннего уха и тактильных рецепторов кожи.

Тонические рефлексы делят на две группы: статические и статокинетические . Статические рефлексы возникают при изменении положения тела, особенно головы, в пространстве. Статокинетические рефлексы проявляются при перемещении тела в пространстве, при изменении скорости движения (вращательного или прямолинейного).

Таким образом, тонические рефлексы предотвращают возможность нарушения равновесия, потерю активной позы и способствуют восстановлению нарушенной позы.

Промежуточный мозг

Промежуточный мозг - часть переднего отдела ствола мозга. Основными образованиями промежуточного мозга являются зрительные бугры (таламус) и подбугорная область (гипоталамус).

Зрительные бугры - массивное парное образование, они занимают основную массу промежуточного мозга. Наибольших размеров и наивысшей сложности строения зрительные бугры достигают у человека.

Зрительные бугры являются центром всех афферентных импульсов. Через зрительные бугры к коре головного мозга поступает информация от всех рецепторов нашего организма, за исключением обонятельных. Кроме того, от зрительных бугров нервные импульсы передаются к различным образованиям ствола мозга. В зрительных буграх обнаружено большое количество ядерных образований. Функционально их можно разделить на две группы: специфические и неспецифические ядра.

Специфические ядра получают информацию от рецепторов, перерабатывают ее и передают в определенные области коры головного мозга, где возникают соответствующие ощущения (зрительные, слуховые и т. д.).

Неспецифические ядра не имеют прямой связи с рецепторами организма. Они получают импульсы от рецепторов через большое количество переключений (синапсов). Импульсы от этих образований через подкорковые ядра поступают к множеству нейронов, расположенных в различных областях коры головного мозга, вызывая повышение их возбудимости.

При повреждении зрительных бугров у человека наблюдается полная потеря чувствительности или ее снижение на противоположной стороне, выпадает сокращение мимической мускулатуры, которое сопровождает эмоции, также могут возникать расстройства сна, понижение слуха, зрения и т. д.

Гипоталамическая (подбугорная) область участвует в регуляции различных видов обмена веществ (белков, жиров, углеводов, солей, воды), регулирует теплообразование и теплоотдачу, состояние сна и бодрствования. В ядрах гипоталамуса происходит образование ряда гормонов, которые затем депонируются в задней доле гипофиза. Передние отделы гипоталамуса являются высшими центрами парасимпатической нервной системы, задние - симпатической нервной системы. Гипоталамус участвует в регуляции многих вегетативных функций организма.

Базальные ядра

К подкорковым, или базальным, ядрам относятся три парных образования: хвостатое ядро, скорлупа и бледный шар. Базальные ядра расположены внутри больших полушарий, в нижней их части, между лобными долями и промежуточным мозгом. Развитие и клеточное строение у хвостатого ядра и скорлупы одинаковы, поэтому их рассматривают как единое образование - полосатое тело.

Полосатое тело ведает сложными двигательными функциями, участвует в осуществлении безусловно-рефлекторных реакций цепного характера - бег, плавание, прыжки. Эту функцию полосатое тело осуществляет через бледный шар, притормаживая его деятельность. Кроме того, полосатое тело через гипоталамус регулирует вегетативные функции организма, а также вместе с ядрами промежуточного мозга обеспечивает осуществление сложных безусловных рефлексов цепного характера - инстинктов .

Бледный шар является центром сложных двигательных рефлекторных реакций (ходьба, бег), формирует сложные мимические реакции, участвует в обеспечении правильного распределения мышечного тонуса. Свои функции бледный шар осуществляет опосредованно через образования среднего мозга (красные ядра и черное вещество). При раздражении бледного шара наблюдается общее сокращение скелетных мышц противоположной стороны тела. При поражении бледного шара движения теряют свою плавность, становятся неуклюжими, скованными.

Следовательно, деятельность подкорковых ядер не ограничивается их участием в формировании сложных двигательных актов. Они благодаря связям с гипоталамусом участвуют в регуляции обмена веществ и функций внутренних органов.

Таким образом, базальные ядра являются высшими подкорковыми центрами объединения (интеграции) функций организма. У человека и высших позвоночных животных деятельность подкорковых ядер контролируется корой головного мозга.

Ретикулярная формация ствола мозга

Особенности строения . Ретикулярная формация представляет собой скопление особых нейронов, которые своими волокнами образуют своеобразную сеть. Нейроны ретикулярной формации в области ствола мозга были описаны в прошлом веке немецким ученым Дейтерсом. В. М. Бехтерев подобные же структуры обнаружил в области спинного мозга. Нейроны ретикулярной формации образуют скопления, или ядра. Дендриты этих клеток относительно длинные, мало ветвистые, аксоны, напротив, короткие, имеют много ответвлений (коллатералей). Эта особенность обусловливает многочисленные синаптические контакты нейронов ретикулярной формации.

Ретикулярная формация ствола мозга занимает центральное положение в продолговатом мозге, варолиевом мосту, среднем и промежуточном мозге (рис. 77).

Нейроны ретикулярной формации не имеют непосредственных контактов с рецепторами организма. Нервные импульсы при возбуждении рецепторов поступают к ретикулярной формации по коллатералям волокон вегетативной и соматической нервной системы.

Физиологическая роль . Ретикулярная формация ствола мозга оказывает восходящее влияние на клетки коры головного мозга и нисходящее на мотонейроны спинного мозга. Оба эти влияния ретикулярной формации могут быть активирующими или тормозными.

Афферентная импульсация к коре головного мозга поступает по двум путям: специфическому и неспецифическому. Специфический нервный путь обязательно проходит через зрительные бугры и несет нервные импульсы к определенным зонам коры головного мозга, в результате осуществляется какая-либо специфическая деятельность. Например, при раздражении фоторецепторов глаз импульсы через зрительные бугры поступают в затылочную область коры головного мозга и у человека возникают зрительные ощущения.

Неспецифический нервный путь обязательно проходит через нейроны ретикулярной формации ствола мозга. Импульсы к ретикулярной формации поступают по коллатералям специфического нервного пути. Благодаря многочисленным синапсам на одном и том же нейроне ретикулярной формации могут сходиться (конвергировать) импульсы различных значений (световые, звуковые и т. д.), при этом они теряют свою специфичность. От нейронов ретикулярной формации эти импульсы поступают не в какую-то определенную область коры головного мозга, а веерообразно распространяются по ее клеткам, повышая их возбудимость и облегчая тем самым выполнение специфической функции (рис. 78).

В опытах на кошках с вживленными в область ретикулярной формации ствола мозга электродами было показано, что раздражение ее нейронов вызывает пробуждение спящего животного. При разрушении ретикулярной формации животное впадает в длительное сонное состояние. Эти данные свидетельствуют о важной роли ретикулярной формации в регуляций состояния сна и бодрствования. Ретикулярная формация не только оказывает влияние на кору головного мозга, но также посылает в спинной мозг к его двигательным нейронам тормозящие и возбуждающие импульсы. Благодаря этому она участвует в регуляции тонуса скелетной мускулатуры.

В спинном мозге, как уже указывалось, также имеются нейроны ретикулярной формации. Полагают, что они поддерживают на высоком уровне активность нейронов спинного мозга. Функциональное состояние самой ретикулярной формации регулируется корой головного мозга.

Мозжечок

Особенности строения мозжечка . Связи мозжечка с другими отделами центральной нервной системы . Мозжечок - это непарное образование; он располагается позади продолговатого мозга и варолиева моста, граничит с четверохолмиями, сверху прикрыт затылочными долями больших полушарий. В мозжечке различают среднюю часть - червь и расположенные по бокам от него два полушария. Поверхность мозжечка состоит из серого вещества, называемого корой, которая включает тела нервных клеток. Внутри мозжечка располагается белое вещество, представляющее собой отростки этих нейронов.

Мозжечок имеет обширные связи с различными отделами центральной нервной системы за счет трех пар ножек. Нижние ножки соединяют мозжечок со спинным и продолговатым мозгом, средние - с варолиевым мостом и через него с двигательной областью коры головного мозга, верхние - со средним мозгом и гипоталамусом.

Функции мозжечка были изучены на животных, у которых мозжечок удаляли частично или полностью, а также путем регистрации его биоэлектрической активности в покое и при раздражении.

При удалении половины мозжечка отмечается повышение тонуса мышц-разгибателей, поэтому конечности животного вытягиваются, наблюдаются изгиб туловища и отклонение головы в оперированную сторону, иногда качательные движения головой. Часто движения совершаются по кругу в оперированную сторону ("манежные движения"). Постепенно отмеченные нарушения сглаживаются, однако сохраняется некоторая неловкость движений.

При удалении всего мозжечка наступают более выраженные двигательные расстройства. В первые дни после операции животное лежит неподвижно с запрокинутой головой и вытянутыми конечностями. Постепенно тонус мышц-разгибателей ослабевает, появляется дрожание мышц, особенно шейных. В дальнейшем двигательные функции частично восстанавливаются. Однако до конца жизни животное остается двигательным инвалидом: при ходьбе такие животные широко расставляют конечности, высоко поднимают лапы, т. е. у них нарушена координация движений.

Двигательные расстройства при удалении мозжечка были описаны известным итальянским физиологом Лючиани. Основными из них являются: атония - исчезновение или ослабление мышечного тонуса; астения - снижение силы мышечных сокращений. Для такого животного характерно быстро наступающее мышечное утомление; астазия - потеря способности к слитным тетаническим сокращениям. У животных наблюдаются дрожательные движения конечностей и головы. Собака после удаления мозжечка не может сразу поднять лапы, животное делает ряд колебательных движений лапой, перед тем как ее поднять. Если поставить такую собаку, то тело ее и голова все время качаются из стороны в сторону.

В результате атонии, астении и астазии у животного нарушается координация движений: отмечаются шаткая походка, размашистые, неловкие, неточные движения. Весь комплекс двигательных расстройств при поражении мозжечка получил название мозжечковой атаксии (рис. 79).

Подобные нарушения наблюдаются и у человека при поражении мозжечка.

Через некоторое время после удаления мозжечка, как уже указывалось, все двигательные расстройства постепенно сглаживаются. Если у таких животных удалить моторную область коры головного мозга, то двигательные нарушения вновь усиливаются. Следовательно, компенсация (восстановление) двигательных расстройств при поражении мозжечка осуществляется при участии коры головного мозга, ее моторной области.

Исследованиями Л. А. Орбели было показано, что при удалении мозжечка наблюдается не только падение мышечного тонуса (атония), но и неправильное его распределение (дистония). Л. А. Орбели установил, что мозжечок влияет и на состояние рецепторного аппарата, а также на вегетативные процессы. Мозжечок оказывает адаптационно-трофическое влияние на все отделы мозга через симпатическую нервную систему, он регулирует обмен веществ в головном мозге и тем самым способствует приспособлению нервной системы к изменяющимся условиям существования.

Таким образом, основными функциями мозжечка являются координация движений, нормальное распределение мышечного тонуса и регуляция вегетативных функций. Свое влияние мозжечок реализует через ядерные образования среднего и продолговатого мозга, через двигательные нейроны спинного мозга. Большая роль в этом влиянии принадлежит двусторонней связи мозжечка с моторной зоной коры головного мозга и ретикулярной формацией ствола мозга (рис. 80).

Принцип иррадиации возбуждений.

Нейроны разных центров связаны между собой вставочными нейронами, поэтому импульсы, поступающие при сильном и длительном раздражении рецепторов, могут вызвать возбуждение не только нейронов центра данного рефлекса, но и других нейронов. Например, если раздражать у спинальной лягушки одну из задних лапок, слабо сдавливая ее пинцетом, то она сокращается (оборонительный рефлекс), если раздражение усилить, то происходит сокращение обеих задних лапок и даже передних. Иррадиация возбуждения


Рис.2.9. Схема процесса иррадиации.

обеспечивает при сильных и биологически значимых раздражениях включение в ответную реакцию большего количества мотонейронов. В основе иррадиации возбуждения лежит описанное выше явление дивергенции (рис. 3.11).

Импульсы, приходящие в ЦНС по разным афферентным волокнам, могут сходиться (конвергировать) к одним и тем вставочным, или эфферентным, нейронам. (Рис 3.12.). Шеррингтон назвал это явление «принципом общего конечного пути». Один и тот же мотонейрон может возбуждаться импульсами, приходящими от различных рецепторов (зрительных, слуховых, тактильных), т.е. участвовать во многих рефлекторных реакциях (включаться в различные рефлекторные дуги). Так, например, мотонейроны, иннервирующие дыхательную мускулатуру, помимо обеспечения вдоха участвуют в таких рефлекторных реакциях, как чихание, кашель и др. На мотонейронах, как правило, конвергируют импульсы от коры больших полушарий и от многих подкорковых центров (через вставочные нейроны или за счет прямых нервных связей).

РиРис.2.10.Схема процесса конверконвергенции
На мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна пирамидного тракта, экстрапирамидных путей, от мозжечка, ретикулярной формации и других структур. Мотонейрон, обеспечивающий различные рефлекторные реакции, рассматривается как их общий конечный путь. В какой конкретный рефлекторный акт будут вовлечены мотонейроны, зависит от характера раздражений и от функционального состояния организма. При этом, поскольку один и тот же нейрон (эффекторный либо промежуточный) может входить в раз­ные «вероятностно-статистические ансамбли» и участвовать в осуществлении различных функ­ций, возникает «борьба за центры», образующие об­щий конечный путь (Шеррингтон). А поскольку эффекторных нейронов примерно в 5 раз меньше, чем рецепторных, то это схождение путей к общему ко­нечному получило название «принципа воронки» (Шеррингтон). Рефлексы, имеющие общий конечный путь, подразделяются на алиированные (союзные), взаимно подкрепляющие и усиливающие друг друга, и антагонистические, конкурентные тормозящие друг друга.

В структурной организации нервных сетей встречается такая ситуация, ког­да на одном нейроне сходятся несколько афферентных терминалей из других отделов ЦНС. Это явление принято называть конвергенцией в нейрон­ных связях. Так, например, к одному мотонейрону подходит около 6000 колла-тералей аксонов первичных афферентов, спинальных интернейронов, нисходя­щих путей из стволовой части мозга и коры. Все эти терминальные окончания образуют на мотонейроне возбуждающие и тормозные синапсы и формируют своеобразную «воронку», суженная часть которой представляет общий мотор­ный выход. Данная воронка является анатомическим образованием, определяю­щим один из механизмов координационной функции спинного мозга.

Суть этого механизма была раскрыта английским физиологом Ч. Шерринг-тоном, который сформулировал принцип общего конечного пути. По Ч. Шер-рингтону, количественное преобладание чувствительных и других приходящих волокон над двигательными создает неизбежное столкновение импульсов в общем конечном пути, которым являются группа мотонейронов и иннервируемые ими мышцы. В результате этого столкновения достигается торможение всех возможных степеней свободы двигательного аппарата, кроме одной, в направлении которой протекает рефлекторная реакция, вызванная максималь­ной стимуляцией одного из афферентных входов.

Рассмотрим случай с одновременным раздражением рецептивных полей чесательного и сгибательного рефлексов, которые реализуются идентичными группа­ми мышц. Импульсы, идущие от этих рецептивных полей, приходят к одной и той же группе мотонейронов, и здесь в узком месте воронки за счет интеграции синаптических влияний осуществляется выбор в пользу сгибательного рефлекса, вызванного более сильным болевым раздражением. Принцип общего конечного пути, как один из принципов координации, действителен не только для спинно­го мозга, он применим для любого этажа ЦНС, в том числе для моторной коры.



Временная и пространственная суммация. Окклюзия

Конвергенция лежит в основе таких физиологических феноменов, как временная и пространственная суммация. В том случае, если два подпороговых раздражителя, приходящие к нейрону через афферентный вход, следуют друг за другом с малым временным интервалом, имеет место суммация вызванных этими раздражителями ВПСП, и суммарный ВПСП достигает порого­вого уровня, достаточного для генерации импульсной активности. Данный про­цесс способствует усилению поступающих к нейрону слабых сигналов и опреде­ляется как временная суммация. Вместе с тем синаптическая активация нейрона может осуществляться через два раздельных входа, конвергирующих на эту клетку. Одновременная стимуляция этих входов подпороговыми раздражителя­ми также может привести к суммации ВПСП, возникающих в двух простран­ственно разделенных зонах клеточной мембраны. В данном случае происходит пространственная суммация, которая, так же как и временная, может вызы­вать длительную деполяризацию клеточной мембраны и генерацию ритмической импульсной активности на фоне этой деполяризации.

Однако возможна и такая ситуация, когда при одновременной стимуляции двух входов возбуждение нейрона и соответствующий ему рефлекторный ответ будут меньше алгебраической суммы ответов при раздельной стимуляции этих входов. При раздельной стимуля­ции двух входов мотонейрон б будет возбуждаться дважды: сначала совместно с нейроном а и затем совместно с нейроном в. При одновременной стимуляции двух входов нейрон б будет возбуждаться только один раз и, соответственно, рефлек­торный ответ будет меньше алгебраической суммы ответов при раздельной стиму­ляции. Этот физиологический феномен, связанный с наличием дополнительного общего пути для двух входов, получил название окклюзии.

Как уже отмечалось, локальные нейронные сети могут уси­ливать слабые сигналы по механизму положительной обратной связи за счет циклической реверберации возбуждения в цепи нейронов. Другой возможный механизм усиления создается за счет синоптической потенциации (облегчения) при ритмических раздражениях пресинаптических входов. Потенциация выра­жается в увеличении амплитуды ВПСП во время (тетаническая потенциация) и после (посттетаническая потенциация) ритмического раздражения пресинапти-ческого аксона с довольно высокой частотой (100-200 имп/с).

Торможение

Координирующая функция локальных нейронных сетей помимо усиления мо­жет выражаться и в ослаблении слишком интенсивной активности нейронов за счет их торможения. Торможение, как особый нервный процесс, характеризуется отсутствием способности к активному распространению по нервной клетке и может быть представлено двумя, формами - первичным и вторичным торможением. Первичное торможение обусловлено наличием специфических тормозных структур и развивается первично без предвательного возбуждения. Примером первичного торможения является так называемое реципрокное торможение мыщц-антагонистов, обнаруженное в спинальных рефлекторных дугах. Суть явлений состоит в том, что если активируются приорецепторы мышцы-сгибателя, то через первичные афференты одновременно возбуждают мотонейрон данной мыпш сгибателя и через коллатераль афферентного волокна - тормозный вставочный нейрон. Возбуждение вставочного нейрона приводит к постсинаптическому торможению мотонейрона антагонистичной мышцы-разгибателя, на теле которого аксон тормозного интернейрона формирует специализированные тормозные синапсы. Реципрокное торможение играет важную роль в автоматической координации двигательных актов.

Торможение по принципу отрицательной обратной связи встречается только на выходе, но и на входе моторных центров спинного мозга. Явление подобного рода описано в моносинаптических соединениях афферентных волокон со спинальными мотонейронами, торможение которых при данной ситуации не связано с изменениями в постсинаптической мембране. Последнее обстоятельство позволило определить эту форму торможения как пресинаптическое. Оно обусловлено наличием вставочных тормозных нейронов, к которым подходят коллатерали афферентных волокон. В свою очередь, вставочные нейроны формируют аксо-аксональные синапсы на афферентных терминалях, являющихся пресинаптическими по отношению к мотонейронам.

СЕДЬМОЙ вопрос.

В ЦНС различают более древние сегментарные и эволюционно более молодые надсегментарные отделы нервной системы. К сегментарным отде­лам относят спинной, продолговатый и средний мозг, участки которых регу­лируют функции отдельных участков тела, лежащих на том же уровне. Над­сегментарные отделы: промежуточный мозг, мозжечок и кора больших по­лушарий - не имеют непосредственных связей с органами тела, а управляют их деятельностью через нижележащие сегментарные отделы.

Спинной мозг. Спинной мозг является низшим и наиболее древним отделом ЦНС. В составе серого вещества спинного мозга человека насчиты­вают около 13,5 млн нервных клеток. Из них основную массу (97%) пред­ставляют промежуточные клетки (вставочные, или интернейроны), которые обеспечивают сложные процессы координации внутри спинного мозга. Сре­ди мотонейронов спинного мозга различают крупные клетки - альфа-мотонейроны и мелкие - гамма-мотонейроны. От альфа-мотонейронов отхо­дят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращения скелетных мышечных волокон. Тонкие волокна гамма-мотонейронов не вызывают сокращения мышц. Они подходят к про-приорецепторам - мышечным веретенам и регулируют чувствительность этих рецепторов, информирующих мозг о выполнении движений.

Рефлексы спинного мозга можно подразделить на двигательные, осуществляемые альфа-мотонейронами передних рогов, и вегетативные, осуществляемые эфферентными клетками боковых рогов. Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица). Спинной мозг осуществляет элементарные двигательные рефлексы: сгибательные и разгибательные, ритмические, шагательные, возникающие при раздражении кожи или проприорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая их напряжение - мышечный тонус. Специальные мотонейроны иннервируют дыхательную мускулатуру - межреберные мышцы и диафрагму - и обеспечивают дыха­тельные движения. Вегетативные нейроны иннервируют все внутренние ор­ганы (сердце, сосуды, потовые железы, железы внутренней секреции, пище­варительный тракт, мочеполовую систему) и осуществляют рефлексы, регу­лирующие их деятельность.

Проводниковая функция спинного мозга связана с передачей в выше­лежащие отделы нервной системы получаемого с периферии потока инфор­мации и с проведением импульсов, идущих из головного мозга в спинной.

Продолговатый мозг и варолиев мост. Продолговатый мозг и варо-лиев мост являются частью ствола мозга. Здесь находится большая группа черепных нервов (от V до XII пары), иннервирующих кожу, слизистые обо­лочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень). Тут же находятся центры многих пищеварительных рефлексов: жева­ния, глотания, движений желудка и части кишечника, выделения пищевари­тельных соков, а также центры некоторых защитных рефлексов (чихания, кашля, мигания, слезоотделения, рвоты) и центры водно-солевого и сахарно­го обмена. На дне IV желудочка в продолговатом мозге находится жизненно важный дыхательный центр. В непосредственной близости расположен сер­дечно-сосудистый центр. Его крупные клетки регулируют деятельность сердца и просвет сосудов.

Продолговатый мозг играет важную роль в осуществлении двига­тельных актов и в регуляции тонуса скелетных мышц, повышая тонус мышц-разгибателей. Он, в частности, принимает участие в осуществлении устано­вочных рефлексов позы (шейных, лабиринтных).

Через продолговатый мозг проходят восходящие пути - слуховой, вестибулярный, проприоцептивный и тактильной чувствительности.

Средний мозг. В состав среднего мозга входят четверохолмия, чер­ная субстанция и красные ядра. В передних буграх четверохолмия находятся зрительные подкорковые центры, а в задних - слуховые. Средний мозг уча­ствует в регуляции движений глаз, осуществляет зрачковый рефлекс (рас­ширение зрачков в темноте и сужение их на свету).

Четверохолмия выполняют ряд реакций, являющихся компонентами ориентировочного рефлекса. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя. Этот рефлекс (по И.П. Пав­лову - рефлекс «Что такое?») необходим для подготовки организма к свое­временной реакции на любое новое воздействие.

Черная субстанция среднего мозга имеет отношение к рефлексам же­вания и глотания, участвует в регуляции тонуса мышц (особенно при выпол­нении мелких движений пальцами рук) и в организации содружественных двигательных реакций.

Красное ядро среднего мозга выполняет моторные функции: регули­рует тонус скелетных мышц, вызывая усиление тонуса мышц-сгибателей.

Оказывая значительное влияние на тонус скелетных мышц, средний мозг принимает участие в ряде установочных рефлексов поддержания позы (выпрямительных - установке тела теменем вверх и др.).

Промежуточный мозг. В состав промежуточного мозга входят тала-мус (зрительные бугры) и гипоталамус (подбугорье).

Через таламус проходят все афферентные пути (за исключением обо­нятельных), которые направляются в соответствующие воспринимающие области коры (слуховые, зрительные и пр.). Ядра таламуса подразделяются на специфические и неспецифические. К специфическим относят переклю­чательные (релейные) ядра и ассоциативные. Через переключательные ядра таламуса передаются афферентные влияния от всех рецепторов тела. Ассо­циативные ядра получают импульсы от переключательных ядер и обеспечи­вают их взаимодействие, т.е. осуществляют их подкорковую интеграцию. Помимо этих ядер в таламусе имеются неспецифические ядра, которые ока­зывают как активирующие, так и тормозящие влияния на небольшие области коры.

Благодаря обширным связям таламус играет важнейшую роль в жиз­недеятельности организма. Импульсы, идущие от таламуса в кору, изменяют состояние корковых нейронов и регулируют ритм корковой активности. При непосредственном участии таламуса происходит образование условных реф­лексов и выработка двигательных навыков, формирование эмоций человека, его мимики. Таламус играет большую роль в возникновении ощущений, в частности ощущения боли. С его деятельностью связывают регуляцию био­ритмов в жизни человека (суточных, сезонных и др.).

Гипоталамус является высшим подкорковым центром регуляции ве­гетативных функций. Здесь расположены вегетативные центры, регули­рующие обмен веществ в организме, обеспечивающие поддержание посто­янства температуры тела (у теплокровных) и нормального уровня кровяного давления, поддерживающие водный баланс, регулирующие чувство голода и насыщения. Раздражение задних ядер гипоталамуса вызывает усиление сим­патических влияний, а передних - парасимпатические эффекты.

Благодаря тесной связи гипоталамуса с гипофизом (гипоталамо-гипофизарная система) осуществляется контроль за деятельностью желез внутренней секреции. Вегетативные и гормональные реакции, регулируемые гипоталамусом, являются компонентами эмоциональных и двигательных ре­акций человека. Структуры гипоталамуса связаны также с регуляцией со­стояний бодрствования и сна.

Неспецифическая система мозга. Неспецифическая система зани­мает срединную часть ствола мозга. Она не связана с анализом какой-либо специфической чувствительности или с выполнением определенных рефлек­торных реакций. Импульсы в эту систему поступают через боковые ответв­ления от всех специфических путей, в результате чего обеспечивается их обширное взаимодействие.

Для неспецифической системы характерно расположение нейронов в виде диффузной сети, обилие и разнообразие их отростков. В связи с этим она и получила название сетевидного образования, или ретикулярной фор­мации.

Различают два типа влияния неспецифической системы на работу других нервных центров - активирующее и тормозящее. Оба типа этих влия­ний могут быть восходящими (к вышележащим центрам) и нисходящими (к нижележащим центрам). Они служат для регулирования функционального состояния мозга, уровня бодрствования и регуляции позно-тонических и фазных реакций скелетных мышц.

Мозжечок. Мозжечок - это надсегментарное образование, не имею­щее непосредственных связей с исполнительными аппаратами. Мозжечок состоит из непарного образования - червя и парных полушарий. Основными нейронами коры мозжечка являются многочисленные клетки Пуркине. Бла­годаря обширным связям (на каждой клетке оканчивается до 200 000 синап­сов) в них происходит интеграция самых различных сенсорных влияний, в первую очередь проприоцептивных, тактильных и вестибулярных. Предста­вительство разных периферических рецепторов в коре мозжечка имеет сома-тотопическую организацию (от греч. somatos - тело, topos - место), т.е. от­ражает порядок их расположения в теле человека. Кроме того, этот порядок расположения соответствует такому же порядку расположения представи­тельства участков тела в коре больших полушарий, что облегчает обмен ин­формацией между корой и мозжечком и обеспечивает их совместную дея­тельность в управлении поведением человека. Правильная геометрическая организация нейронов мозжечка обуславливает его значение в отсчете вре­мени и четком поддержании темпа циклических движений.

Основной функцией мозжечка является регуляция позно-тонических реакций и координация двигательной деятельности.

По анатомическим особенностям (связям коры мозжечка с его ядра­ми) и функциональному значению мозжечок подразделяют на три продоль­ные зоны: внутреннюю, или медиальную, - кору червя, функцией которой является регуляция тонуса скелетных мышц, поддержание позы и равнове­сия тела; промежуточную - среднюю часть коры полушарий мозжечка, функция которой - согласование позных реакций с движениями, а также коррекция ошибок; боковую, или латеральную, - кору полушарий мозжечка, которая совместно с промежуточным мозгом и корой больших полушарий участвует в программировании быстрых баллистических движений (бросков, ударов, прыжков и др.).

Базальные ядра. К базальным ядрам относят полосатое ядро, со­стоящее из хвостатого ядра и скорлупы, и бледное ядро, а в настоящее время причисляют также миндалевидное тело (относящееся к вегетативным цен­трам лимбической системы) и черную субстанцию среднего мозга.

Афферентные влияния приходят к базальным ядрам от рецепторов тела через таламус и от всех областей коры больших полушарий. Они посту­пают в полосатое тело. Эфферентные влияния от него направляются к блед­ному ядру и далее к стволовым центрам экстрапирамидной системы, а также через таламус обратно к коре.

Базальные ядра участвуют в образовании условных рефлексов и осу­ществлении сложных безусловных рефлексов (оборонительные, пищедобы-вательные и др.). Они обеспечивают необходимое положение тела во время физической работы, а также протекание автоматических ритмических дви­жений (древних автоматизмов).

Бледное ядро выполняет основную моторную функцию, а полосатое тело регулирует его активность. В настоящее время выявлено значение хво­статого ядра в контроле сложных психических процессов - внимания, памя­ти, обнаружения ошибок.

ВОСЬМОЙ вопрос.

У высших млекопитающих - животных и человека - ведущим отде­лом ЦНС является кора больших полушарий.

Корковые нейроны. Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд нервных клеток. Для нее характерно обилие межнейронных связей.

Основными типами корковых клеток являются звездчатые и пира­мидные нейроны. Звездчатые нейроны связаны с процессами восприятия раздражений и объединением деятельности различных пирамидных нейро­нов. Пирамидные нейроны осуществляют эфферентную функцию коры (пре­имущественно через пирамидный тракт) и внутрикорковые процессы взаи­модействия между удаленными друг от друга нейронами. Наиболее крупные пирамидные клетки - гигантские пирамиды Беца - находятся в передней центральной извилине (моторной зоне коры).

Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Вытянутые по вертикали крупные пирамидные клетки с расположенными над ними и под ними нейронами образуют функ­циональные объединения нейронов. Все нейроны вертикальной колонки отвечают на одно и то же афферентное раздражение (от одних и тех же рецепторов) одинаковой реакцией и совместно формируют эфферентные ответы пирамидных нейронов.

Схема корковой функциональной еди­ницы - вертикаль­ной колонки нейронов

1,2 - пирамидные нейроны; 3, 4 - возвратные коллате­рали аксонов; 5 – эфферен­тный выход; 6, 7 - афферентные входы; 8 – интер­нейрон

По мере надобности вертикальные колонки могут объединяться в более крупные образования, обеспечивая комбиниро­ванные реакции. Функциональное значение различных корковых полей. По осо­бенностям строения и функцио­нальному значению отдель­ных корковых уча­стков вся кора подразделяется на три основные группы полей - первичные, вторичные и третичные.

Первичные поля связаны с органами чувств и органами движения на периферии. Они обеспечивают возникновение ощущений. К ним относятся, например, поле болевой и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слухо­вое поле в височной области и моторное поле в передней центральной изви­лине. В первичных полях находятся высокоспециализированные клетки-определители, или детекторы, избирательно реагирующие только на определенные раздражения.

Первичные, вторичные и третич­ные поля коры боль­ших полушарий

На А: крупные точки -первичные поля, средние - вторичные поля, мел­кие (серый фон) - тре­тичные поля. На Б: первичные (проек­ционные) поля коры больших полушарий

Например, в зрительной коре имеются нейроны-детекторы, возбуждающиеся только при включении или выключении света, чувствительные лишь к определенной его интенсивности, к конкретным ин­тервалам светового воздействия, к определенной длине волны и т.д.

При разрушении первичных полей коры возникают так называемые корковая слепо­та, корковая глухота и т.п. Вторичные поля расположены рядом с первичными. В них происхо­дит осмысливание и узнавание звуковых, световых и других сигналов, воз­никают сложные формы обобщенного восприятия. При поражении вторич­ных полей сохраняется способность видеть предметы, слышать звуки, но че­ловек их не узнает, не помнит значения.

Сенсорное (слева) и моторное (справа) представительство различных частей тела в коре больших полушарий

Третичные поля развиты только у человека. Это ассоциативные об­ласти коры, обеспечивающие высшие формы анализа и синтеза и форми­рующие целенаправленную поведенческую деятельность человека. Третич­ные поля находятся в задней половине коры - между теменными, затылоч­ными и височными областями - и в передней половине - в передних частях лобных областей. Их роль особенно велика в организации согласованной ра­боты обоих полушарий. Третичные поля созревают у человека позже других корковых полей и раньше других деградируют при старении организма.

Функцией задних третичных полей (главным образом, нижнетемен­ных областей коры) является прием, переработка и хранение информации. Они формируют представление о схеме тела и схеме пространства, обеспечивая пространственную ориентацию движений. Передние третичные поля (переднелобные области) выполняют общую регуляцию сложных форм по­ведения человека, формируя намерения и планы, программы произвольных движений и контроль за их выполнением. Развитие третичных полей у чело­века связывают с функцией речи. Мышление(внутренняя речь) возможно только при совместной деятельности различных сенсорных систем, объеди­нение информации от которых происходит в третичных полях. При врож­денном недоразвитии третичных полей человек не в состоянии овладеть ре- чью (произносит лишь бессмысленные звуки) и даже простейшими двига­тельными навыками (не может одеваться, пользоваться орудиями труда и т.п.).

Парная деятельность и доминирование полушарий. Обработка информации осуществляется в результате парной деятельности обоих полу­шарий головного мозга. Однако, как правило, одно из полушарий является ведущим - доминантным. У большинства людей с ведущей правой рукой (правшей) доминантным является левое полушарие, а соподчиненным (суб­доминантным) - правое полушарие.

Левое полушарие по сравнению с правым имеет более тонкое ней­ронное строение, большее богатство взаимосвязей нейронов, более концен­трированное представительство функций и лучшие условия кровоснабжения. В левом доминантном полушарии находится моторный центр речи (центр Брока), обеспечивающий речевую деятельность, и сенсорный центр речи, осуществляющий понимание слов. Левое полушарие специализировано на тонком сенсомоторном контроле за движениями рук.

Функциональная асимметрия обнаруживается у человека в отноше­нии не только моторных функций (моторная асимметрия), но и сенсорных (сенсорная асимметрия). Как правило, у человека имеется «ведущий глаз» и «ведущее ухо», сигналы от которых являются главенствующими при воспри­ятии. Однако проблема функциональной асимметрии довольно сложна. На­пример, у человека-правши может быть ведущим левый глаз или левое ухо. В каждом полушарии могут быть представлены функции не только противо­положной, но и одноименной стороны тела. В результате этого обеспечива­ется возможность замещения одного полушария другим в случае его повре­ждения, а также создается структурная основа для переменного доминирова­ния полушарий при управлении движениями.

Специализация полушарий проявляется и в отношении психических функций {психическая асимметрия). Для левого полушария характерны ана­литические процессы, последовательная обработка информации, в том числе с помощью речи, абстрактное мышление, оценка временных отношений, предвосхищение будущих событий, успешное решение вербально-логи-ческих задач. В правом полушарии информация обрабатывается целостно, синтетически (без расчленения на детали), с учетом прошлого опыта и безучастия речи, преобладает предметное мышление. Эти особенности позволяют связывать с правым полушарием восприятие пространственных при­знаков и решение зрительно-пространственных задач.

Электрическая активность коры больших полушарий. Изменение функционального состояния коры отражаются в записи ее электрической ак­тивности - электроэнцефалограммы (ЭЭГ). Современные электроэнцефало­графы усиливают потенциалы мозга в 2-3 млн раз и дают возможность ис­следовать ЭЭГ от многих точек коры одновременно, т.е. изучать системные процессы.

Различают определенные диапазоны частот, называемые ритмами ЭЭГ, в состоянии относительного покоя чаще всего регистрирует­ся альфа-ритм (8-13 колебаний в 1 с); в состоянии активного внимания - бе­та-ритм (14 колебаний в 1 с и выше); при засыпании, некоторых эмоцио­нальных состояниях - тета-ритм (4-7 колебаний в 1 с); при глубоком сне, по­тере сознания, наркозе - дельта-ритм (1-3 колебания в 1 с).

Электроэнцефалограмма затылочной (а - д) и моторной (е - з) областей коры больших полуша­рий человека при различных состоя­ниях и во время мышечной рабо­ты:

а - активное состояние, глаза от­крыты (бета-ритм); б - покой, глаза закрыты (альфа-ритм); в - дремота (тета-ритм); г - засыпание; д - глу­бокий сон (дельта-ритм); е - не­привычная или тяжелая работа -асинхронная частая активность (явление десинхронизации); ж -циклические дви­жения - медлен­ные потенциалы в темпе движения («меченые ритмы» ЭЭГ); з - вы­полнение освоенного движения -появление альфа-ритма

Помимо фоновой активности в ЭЭГ выделяют отдельные потенциа­лы, связанные с какими-либо событиями: вызванные потенциалы, возни­кающие в ответ на внешние раздражения (слуховые, зрительные и др.); по­тенциалы, отражающие мозговые процессы при подготовке, осуществлении и окончании отдельных двигательных актов - «волна ожидания», или услов­ная негативная волна: премоторные, моторные, финальные потенциалы и др. Кроме того, регистрируют сверхмедленные колебания длительностью от не­скольких секунд до десятков минут (так называемые «омега-потенциалы» и др.), которые отражают биохимические процессы регуляции функций и пси­хической деятельности.

ДЕВЯТЫЙ вопрос.

Под лимбической системой понимают ряд корковых и подкорковых структур, функции которых связаны с организацией мотивационно-эмоциональных реакций, процессами памяти и обучения.

Корковые отделы лимбической системы, представляющие ее высший отдел, находятся на нижних и внутренних поверхностях больших полушарий (участки лобной коры, поясная извилина, или лимбическая кора, гиппокамп и др.). К подкорковым структурам лимбической системы относят гипотала­мус, некоторые ядра таламуса, среднего мозга и ретикулярной формации. Между всеми этими образованиями имеются тесные прямые и обратные свя­зи, образующие так называемое лимбическое кольцо.

Лимбическая система участвует в самых разнообразных проявлениях деятельности организма: в регуляции пищевого и питьевого поведения, цик­ла сон-бодрствование, в процессах формирования памятного следа (отложе­ния и извлечения из памяти), в развитии агрессивно-оборонительных реак­ций, обеспечивая избирательный характер поведения. Она формирует поло­жительные и отрицательные эмоции со всеми двигательными и гормональ­ными их компонентами. Исследование различных участков лимбической системы выявило наличие центров удовольствия, формирующих положи­тельные эмоции, и неудовольствия, формирующих отрицательные эмоции. Изолированное раздражение таких точек в глубоких структурах мозга чело­века вызывало появление чувства «беспричинной радости», «беспредметной тоски», «безотчетного страха».

ДЕСЯТЫЙ вопрос.

Все функции организма условно можно разделить на соматические, или анимальные (животные), связанные с восприятием внешней информации и деятельностью мышц, и вегетативные (растительные), связанные с дея­тельностью внутренних органов: процессы дыхания, кровообращения, пище­варения, выделения, обмена веществ, роста и размножения.

Функциональная организация вегетативной нервной системы. Вегетативной нервной системой называют совокупность эфферентных нерв­ных клеток спинного и головного мозга, а также клеток особых узлов (ганг­лиев), иннервирующих внутренние органы. Раздражения различных рецеп­торов тела могут вызвать изменения как соматических, так и вегетативных функций, поскольку афферентные и центральные отделы этих рефлекторных дуг общие. Они различаются лишь своими эфферентными отделами. Характерной особенностью эфферентных путей, входящих в рефлек­торные дуги вегетативных рефлексов, является их двухнейронное строение (один нейрон находится в ЦНС, другой - в ганглиях или в иннервируемом органе).

Вегетативная нервная система подразделяется на два отдела - симпа­тический и парасимпатический.

Эфферентные пути симпатической нервной системы начинаются в грудном и поясничном отделах спинного мозга от нейронов его боковых ро­гов. Передача возбуждения с предузловых симпатических волокон на после-узловые происходит с участием медиатора ацетилхолина, а с послеузловых волокон на иннервируемые органы - с участием медиатора норадреналина. Исключением являются волокна, иннервирующие потовые железы и расши­ряющие сосуды скелетных мышц, где возбуждение передается с помощью ацетилхолина.

Эфферентные пути парасимпатической нервной системы начинаются в головном мозге - от некоторых ядер среднего и продолговатого мозга - и в спинном мозге - от нейронов крестцового отдела. Проведение возбуждения в синапсах парасимпатического пути происходит с участием медиатора аце­тилхолина. Второй нейрон находится в иннервируемом органе или вблизи него.

Высшим регулятором вегетативных функций является гипоталамус, который действует совместно с ретикулярной формацией и лимбической системой, под контролем коры больших полушарий. Кроме того, нейроны, расположенные в самих органах или в симпатических узлах, могут осущест­влять собственные рефлекторные реакции без участия ЦНС - «перифериче­ские рефлексы».

Функции симпатической нервной системы. С участием симпатиче­ской нервной системы протекают многие важные рефлексы в организме, на­правленные на обеспечение его деятельного состояния, в том числе - его двигательной деятельности. К ним относятся рефлексы расшире­ния бронхов, учащения и усиления сердечных сокращений, выброс депони­рованной крови из печени и селезенки, расщепление гликогена до глюкозы в печени (мобилизация углеводных источников энергии), усиление деятельно­сти желез внутренней секреции и потовых желез. Симпатическая нервная система снижает деятельность ряда внутренних органов: в результате суже­ния сосудов в почках уменьшаются процессы мочеобразования, угнетается секреторная и моторная деятельность органов желудочно-кишечного тракта; предотвращается акт мочеиспускания - расслабляются мышцы стенки моче­вого пузыря и сокращается его сфинктер.

Повышенная активность организма сопровождается симпатическим рефлексом расширения зрачка. Огромное значение для двигательной дея­тельности организма имеет трофическое влияние симпатических нервов на скелетные мышцы, улучшающее в них обмен веществ и снимающее утомле­ние.

Вегетативная нервная система

Симпатический отдел нервной системы не только повышает уровень функционирования организма, но и мобилизует его скрытые функциональ­ные резервы, активирует деятельность мозга, повышает защитные реакции (иммунные реакции, барьерные механизмы и др.), запускает гормональные реакции. Особенное значение имеет симпатическая нервная система при раз­витии стрессовых состояний, в наиболее сложных условиях жизнедеятельно­сти. Важна роль симпатических влияний в процессах приспособления (адап­тации) организма к напряженной работе в различных условиях внешней сре­ды. Эта функция называется адаптационно-трофической.

Функции парасимпатической нервной системы. Парасимпатиче­ская нервная система осуществляет сужение бронхов, замедление и ослабле­ние сердечных сокращений, пополнение энергоресурсов (синтез гликогена в печени и усиление процессов пищеварения), усиление процессов мочеобра-зования в почках и обеспечение акта мочеиспускания (сокращение мышц мочевого пузыря и расслабление его сфинктера) и др. Парасимпатическая нервная система оказывает преимущественно пусковые влияния: сужение зрачков, бронхов, включение деятельности пищеварительных желез и т.п.

Деятельность парасимпатического отдела вегетативной нервной сис­темы направлена на текущую регуляцию функционального состояния, на поддержание постоянства внутренней среды - гомеостаза. Парасимпатиче­ский отдел обеспечивает восстановление различных физиологических пока­зателей, резко измененных после напряженной мышечной работы, пополне­ние израсходованных энергоресурсов. Медиатор парасимпатической систе­мы - ацетилхолин, снижая чувствительность адренорецепторов к действию адреналина и норадреналина, оказывает определенное антистрессорное влияние.

Вегетативные рефлексы. Через вегетативные симпатические и па­расимпатические пути ЦНС осуществляет некоторые вегетативные рефлек­сы, начинающиеся с различных рецепторов внешней и внутренней среды: висцеро-висцеральные (с внутренних органов на внутренние органы - на­пример дыхательно-сердечный рефлекс); дермо-висцеральные (с кожных по­кровов - изменение деятельности внутренних органов при раздражении ак­тивных точек кожи, например, иглоукалыванием, точечным массажем); с ре­цепторов глазного яблока - глазо-сердечный рефлекс Аншера (урежение сердцебиений при надавливании на глазные яблоки - парасимпатический эффект); моторно-висцеральные и др. Они используются для оценки функ­ционального состояния организма, и особенно состояния вегетативной нервной системы. По ним судят об усилении влияния симпатического или парасимпатического ее отдела.

Понравилась статья? Поделиться с друзьями: