Информатика как наука. основные понятия

Слово «информация» происходит от латинского слова informatio , что означает разъяснение, высказывания, осведомленность. Само слово информация лишь сравнительно недавно стало превращаться в точный термин. До этого информацию воспринимали как то, что присутствует в языке, письме или передается при общении. Сейчас смысл, который вкладывается в это понятие, очень изменился и расширился. Возникла особая математическая дисциплина — теория информации.

Хотя в теории информации и вводится несколько ее конкретных определений, все они не охватывают всего объема этого понятия. Рассмотрим некоторые определения.

Информация — это отражение реального (материального, предметного) мира, которое выражается в виде сигналов, знаков.

Информация — любая совокупность сигналов, сведений (данных), которые какая-либо система воспринимает из окружающей среды (входная информация), выдает в окружающую среду (исходящая информация) или сохраняется внутри определенной системы (внутренняя информация).

Информация существует в виде документов, рисунков, текстов, звуковых и световых сигналов, энергетических и нервных импульсов и т.п.

Под информацией понимают сведения об объектах окружающего мира, которые воспринимаются человеком, животным, растительным миром или специальными устройствами и повышают их уровень информированности.

Информация передается с помощью сообщений. Сообщение бывают устными, письменными, в виде рисунков, жестов, специальных знаков или организованными каким-то другим образом. Примерами сообщений являются: показания измерительного устройства, дорожные знаки, текст телеграммы, устный рассказ и тому подобное.

Виды информации

Информацию можно разделить на виды по нескольким признакам:

По способу восприятия

Для человека информация делится на виды в зависимости от типа рецепторов, воспринимающих ее:

  • Визуальная — воспринимается органами зрения.
  • Аудиальная — воспринимается органами слуха.
  • Тактильная — воспринимается тактильными рецепторами.
  • Обонятельная — воспринимается обонятельными рецепторами.
  • Вкусовая — воспринимается вкусовыми рецепторами.

По форме представления

По форме представления информация делится на следующие виды:

  • Текстовая — что передается в виде символов, предназначенных обозначать лексемы языка.
  • Числовая — в виде цифр и знаков, обозначающих математические действия.
  • Графическая — в виде изображений, событий, предметов, графиков.
  • Звуковая — устная или в виде записи передача лексем языка аудиальным путем.

По назначению

  • Массовая — содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума.
  • Специальная — содержит специфический набор понятий, при использовании происходит передача сведений, которые могут быть не понятны основной массе социума, но необходимы и понятны в рамках узкой социальной группы, где используется данная информация.
  • Личная — набор сведений о какой-либо личности, которые определяют социальное положение и типы социальных взаимодействий внутри популяции.

Свойства информации

Полезность. Полезность информации оценивается по тем задачам, которые можно решить с ее использованием. Сведения, важные и полезные для одного человека, оказываются бесполезными для другого, если он не может их использовать.

Актуальность. Информация актуальна (своевременна), если она важна в данный момент времени. Если вы собираетесь ехать поездом, то для вас важна информация о том, когда этот поезд отправляется. Однако эта информация теряет свою актуальность после того, как поезд тронулся.

Вероятность (правдивость) . Информация считается достоверной, если она не противоречит реальной действительности, правильно ее объясняет и подтверждается. Если вы узнали о наводнении из информационной телепрограммы, то эта информация, по всей вероятности, является достоверной. В то же время слухи о пришествии инопланетян, которое ожидается на следующей неделе, недостоверны.

Объективность. Информация может быть объективной или субъективной (зависеть или не зависеть от чьего суждения). Например, сообщение «вода в море холодная» является субъективным, одновременно сообщение «температура +17 градусов Цельсия» дает объективную информацию.

Полнота. Информация полная, если ее достаточно для правильных выводов и принятия правильных решений. Если человеку на основе какой-либо информации приходится что-то решать, то он сначала оценивает, достаточно этой информации для принятия правильного решения.

Понятность. Информация понятна, если при ее восприятии нет необходимости в дополнительных сообщениях (не возникает вопросов). Если человеку говорят что-то, к восприятию чего он еще не подготовлен, например обращаются английском раньше, чем человек выучил этот язык, то он из услышанной информации вынесет совсем другую информацию, чем это было бы тогда, когда человек выучил английский язык.

Носители информации

Среда, в которой зафиксировано сообщение, называют носителем сообщения. В «докомпьютерную» эру информацию хранили на бумаге, фотографиях, кинопленке, магнитной ленте и др. С появлением первых компьютеров нашли широкое применение перфокарты и перфоленты, магнитные диски, компакт-диски.

Перфокарта — это лист тонкого картона стандартных размеров. В определенных позициях перфокарты пробивают дырочки. Наличие дырочки в определенной позиции считают единицу, а ее отсутствие — ноль.

Перфолента — это лента плотной бумаги стандартной ширины, на которую заносится информация пробивкой дырочек в соответствующих позициях на 5-ти или 8-ми параллельных дорожках.

Конечно, за дырочками, нанесенными на перфокарты или перфоленты, стоит вполне определенная информация.

Магнитные ленты и магнитные диски для хранения информации начали использовать с развитием вычислительной техники. Для записи 1 (единицы) намагничивалась небольшая область. Размагниченная (или намагниченная противоположно) область означала 0 (ноль).

Гибкие магнитные диски, или ГМД (FDD), позволяли легко переносить информацию с одного компьютера на другой, а также сохранять информацию, которая не используется на компьютере постоянно. Выпускались дискеты, как правило, с диском диаметром 3,5 дюйма и имели емкость всего 1,44 Мбайта.

Жесткие магнитные диски, или винчестеры (HDD), и сегодня являются основным типом носителей для долговременного хранения информации. Накопитель включает собственно магнитный диск, систему позиционирования и комплект магнитных головок — все это размещено в герметично закрытом корпусе.

Магнитные карточки содержат закодированную информацию, эта технология используется в кредитных, телефонных и регистрационных карточках, а также пропусках и «ключах» для кодовых замков.

Компакт-диски (оптические диски или CD) — это диск из специальной пластмассы с зеркальным покрытием с той стороны, с которой записывается и считывается информация. Информация на диск записывается так: диск вращается, и на его поверхности лазером в определенных местах наносятся «повреждение» поверхности таким образом, чтобы от них не отражался луч лазера при считывании. Таким образом записывается 1, «неповрежденные» места означают логический 0.

Существуют CD-R, DVD-R — оптические диски, на которые можно осуществлять однократную запись, а также CD-RW, DVD-RW — оптические диски, на которые можно осуществлять многократную запись.

Формы и способы представления информации

Символьная форма представления информации является наиболее простой, в ней каждый символ имеет какое-то значение. Например: красный свет светофора, показатели поворота на транспортных средствах, различные жесты, сокращения и обозначения в формулах.

Текстовая форма представления информации является более сложной. Эта форма предусматривает, что содержание сообщения передается не через отдельные символы (цифры, буквы, знаки), а их сочетанием, порядком размещения. Последовательно расположены символы образуют слова, которые в свою очередь могут образовывать предложения. Текстовая информация используется в книгах, брошюрах, газетах, журналах и т.

Графическая форма представления информации, как правило, имеет наибольший объем. К этой форме относятся фотографии, картины, чертежи, графики и тому подобное. Графическая форма более информативна. Видимо, поэтому, когда берем в руки новую книгу, то первым делом ищем в ней рисунки, чтобы создать о ней наиболее полное впечатление.

Информацию можно подавать одним из способов: буквами и знаками, жестами, нотами музыки, рисунками, картинами, скульптурами, звукозаписью, видеозаписью, кинофильмами и тому подобное.

Информация может быть в виде непрерывных (аналоговых) и дискретных (цифровых) сигналов.

Информация в аналоговом виде меняет свое значение постепенно (показатели термометра, часов со стрелками, спидометра и т.д.).

Информация в дискретном виде меняет свое значение с определенным шагом (показатели электронных часов, весы с гирями, подсчет количества предметов и т.п.).

Информатика

Термин информатика происходит от двух слов: информация и автоматика. Значит информатика это «наука о преобразовании информации».

Этот термин впервые введен в обиход во Франции в середине 60-х годов XX в., когда началось широкое использование вычислительной техники. Тогда в англоязычных странах вошел в употребление термин «Computer Science» для обозначения науки о преобразовании информации, которая базируется на вычислительной технике. Теперь эти термины являются синонимами.

Основа информатики — информационные технологии — совокупность средств и методов, с помощью которых осуществляется во всех сферах жизни и деятельности человека.

Информационная система взаимосвязанная совокупность средств, методов и персонала, используемая для хранения, обработки и выдачи информации с целью достижения конкретной задачи.

Современное понимание информационной системы (ИС) предусматривает использование компьютера в качестве основного технического средства обработка информации. Как правило, это компьютеры, оснащенные специализированными программными средствами.

В работе ИС, в ее технологическом процессе можно выделить следующие этапы:

  1. Зарождение данных — формирование первичных сообщений фиксируют результаты определенных операций, свойства объектов и субъектов управления, параметры процессов, содержание нормативных и юридических актов и т.п.
  2. Накопление и систематизация данных — организация такого их размещения, которое обеспечивало бы быстрый поиск и отбор нужных сведений, защита их от искажений, потери, деформирование целостности и др.
  3. Обработка данных — процессы, в результате которых на основании ранее накопленных данных формируются новые виды данных: обобщающие, аналитические, рекомендательные, прогнозные. Производные данные также могут проходить дальнейшую обработку, давая сведения обобщенности и др.
  4. Отображение данных — представление их в форме, пригодной для восприятия человеком. Прежде всего — это вывод на печать, то есть изготовление документов, удобных для восприятия человеком. Широко используют построение графических иллюстративных материалов (графиков, диаграмм) и формирование звуковых сигналов.

Сообщения, которые формируются на первом этапе, могут быть обычным бумажным документом, сообщением «в электронном виде» или тем и другим одновременно. В современных информационных системах сообщение по большей части имеют «электронный вид». Основные составляющие информационных процессов:

  • сбор данных: накопление данных с целью достаточной полноты для принятия решений;
  • сохранения;
  • передача;
  • обработка.

Одним из важнейших условий применения электронно — вычислительных машин (ЭВМ) для решения тех или иных задач является построение соответствующего алгоритма (программы), содержащий информацию о правилах получения результирующей (итоговой) информации из заданной (входной) информации.

Программирование — дисциплина, исследующая методы формулировки и решения задач с помощью ЭВМ, и является основной составной частью информатики.

Итак, информация, ЭВМ, алгоритм — три фундаментальных понятия информатики.

Информатика — комплексная научная и инженерная дисциплина, изучающая все аспекты проектирования, создания, оценки, функционирования компьютерных систем обработки информации, ее применение и влияние на различные области социальной практики.

Родоначальниками информатики является науки: документалистика и кибернетика. Кибернетика — переводится, как «искусный в управлении».

В информатике выделяют три основных части:

  • алгоритмы обработки информации (algorithm )
  • вычислительную технику (hardware )
  • компьютерные программы (software ).

Предмет информатики составляют понятия:

  • аппаратное обеспечение средств вычислительной техники
  • программное обеспечение средств вычислительной техники;
  • средства взаимодействия аппаратного и программного обеспечения;
  • средства взаимодействия человека и аппаратного и программного обеспечения.

Методы и средства взаимодействия человека с аппаратными и программными средствами называется интерфейсом .

Двоичное кодирование информации

В разговорной речи часто встречаются такие выражения, как передача информации, сжатие информации, обработка информации. В таких случаях всегда идет об определенном сообщении, которое закодировано и передано тем или иным способом.

В вычислительной технике наиболее часто применяется двоичная форма представления информации , основанной на представленные данных последовательностью двух знаков: 0 и 1

Эти знаки называются двоичными цифрами, по — английски — binary digit , или, сокращенно bit (бит) .

Также используется восьмеричная форма представления информации (основана на представленные последовательности цифр 0, 1, …, 7) и шестнадцатеричная форма представления информации (основана на представленные последовательностью 0, 1, …, 9, A, B, C, …, F).

Информационным объемом сообщение называется количество битов в этом сообщении. Подсчет информационного объема сообщение является чисто техническим заданием, так как при таком подсчете содержание сообщения не играет никакой роли.

В современной вычислительной технике биты принято объединять в восьмерки, которые называются байтами: 1 байт = 8 бит. Наряду с битами и байтами используют и большие единицы измерения информации.

  • 1 bit binary digit {0,1};
  • 1 байт = 8 бит;
  • 1 Кбайт = 2 10 байт = 1024 байт;
  • 1 Мбайт = 2 10 Кбайт = 1024 Кбайт = 2 20 байт;
  • 1 Гбайт = 2 10 Мбайт = 1024 Мбайт = 2 30 байт;
  • 1 Тбайт = 2 10 Гбайт = 1024 Гбайт = 2 40 байт.
  • 1 Пбайт = 2 10 Тбайт = 1024 Тбайт = 2 50 байт.

С помощью двух бит кодируются четыре различных значения: 00, 01, 10, 11. Тремя битами можно закодировать 8 состояний:

  • 000 001 010 011 100 101 110 111

Вообще с помощью n бит можно закодировать 2 n состояний.

Скорость передачи информации измеряется количеством битов, передаваемых за одну секунду. Скорость передачи бит за одну секунду называется 1 Бодом. Производные единицы скорости передачи называются Кбод, Мбод и Гбод:

  • 1 Кбод (один килобод) = 2 10 бод = 1024 бит / с;
  • 1 Мбод (один мегабод) = 2 20 бод = 1024 Кбод;
  • 1 Гбод (один гигабод) = 2 30 бод = 1024 Мбод.

Пример . Пусть модем передает информацию со скоростью 2400 бод. Для передачи одного символа текста нужно передать около 10 битов. Таким образом, модем способен за 1 секунду передать около 2400/10 = 240 символов.

На ЭВМ можно обрабатывать не только числа, но и тексты. При этом нужно закодировать около 200 различных символов. В двоичном коде для этого нужно не менее 8 разрядов (2 8 = 256). Этого достаточно для кодирования всех символов английского и русского алфавитов (строчные и прописные), знаков препинания, символов арифметических действий некоторых общепринятых спецсимволов.

В настоящее время существует несколько систем кодирования.

Наиболее распространенными являются следующие системы кодирования: ASCII, Windows-1251, KOИ8, ISO.

ASCII (American Standard Code for Information Interchange — стандартный код информационного обмена)

В системе ASCII закреплены 2 таблицы кодирования: базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, расширенная от 128 до 255.

В первых 32 кодах (0-31) размещаются так называемые управляющие коды, которым не соответствуют никакие символы языков, и, соответственно коды не выводятся ни на экран, ни на устройстве печати.

Начиная с кода 32 по код 127 размещены коды символов английского алфавита.

Символы национального алфавита размещены в кодах от 128 до 255.

Кодирования Windows-1251 стала стандартом в российском секторе Wold Wide Web .

KOИ8 (код обмена информацией) является стандартным кодированием в сообщениях электронной почты и телеконференций.

ISO (International Standard Organization ) — международный стандарт. Это кодирования используется редко.

Появление информатики обусловлено возникновением и распространением новой технологии сбора, обработки и передачи информации, связанной с фиксацией данных на машинных носителях. Основной инструмент информатики — компьютер.

Компьютер, получивший свое название от первоначального назначения — выполнения вычислений, имеет второе очень важное применение. Он стал незаменимым помощником человека в его интеллектуальной деятельности и основным техническим средством информационных технологий. А быстрое развитие в последние годы технических и программных возможностей персональных компьютеров, распространение новых видов информационных технологий создают реальные возможности их использования, открывая перед пользователем качественно новые пути дальнейшего развития и адаптации к потребностям общества.

Дезинформация

Дезинформация - заведомо неверная, ложная информация, предоставляемая оппоненту или противнику для более эффективного ведения военных действий, получения каких либо конкурентных преимуществ, для проверки на утечку информации и выявления источника утечки, определения потенциально ненадежных клиентов или партнеров. Также дезинформацией называется сам процесс манипулирования информацией, как то: введение кого-либо в заблуждение путём предоставления неполной информации или полной, но уже не актуальной информации, искажения контекста, искажения какой либо части информации.

Дезинформация, как мы видим, - это результат деятельности человека, желание создать ложное впечатление и, соответственно подтолкнуть к требуемым действиям и/или бездействию.

Информа́тика - наука о способах получения, накопления, хранения, преобразования, передачи, защиты и использования информации . Она включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные , вроде анализа алгоритмов , так и довольно конкретные, например, разработка языков программирования .

Информационные ресурсы - Различные формализованные знания (теории, идеи, изобретения), данные (в том числе документы), технологии и средства их сбора, обработки, анализа, интерпретации и применения, а также обмена между источниками и потрбитеелями информации.

Информационная технология -1.Совокупность научных дисциплин, занимающихся изучением, созданием и применением методов, способов, действий, процессов, средств, правил, навыков, используемых для получения новой информации (сведений, знаний), сбора, обработки, анализа, интерпретации, выделения и применения данных, контента и информации с целью удовлетворения информационных потребностей народного хозяйства и общества в требуемом объёме и заданного качества.

Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.

Рассмотренный выше подход к информации как мере уменьшения неопределенности знания позволяет количественно измерять информацию. Существует формула, которая связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:

единицы измерения количества информации. Минимальной единицей измерения количества информации является бит, а следующей по величине единицей - байт, причем:

1 байт = 8 битов = 2 3 битов.

В информатике система образования кратных единиц измерения несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10 n , где n = 3, 6, 9 и т. д., что соответствует десятичным приставкам "Кило" (10 3), "Мега" (10 6), "Гига" (10 9) и т. д.

В компьютере информация кодируется с помощью двоичной знаковой системы, и поэтому в кратных единицах измерения количества информации используется коэффициент 2 n

Так, кратные байту единицы измерения количества информации вводятся следующим образом:

1 килобайт (Кбайт) = 2 10 байт = 1024 байт;

1 мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт;

1 гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт.

2. Определение медицинской информатики, как прикладной науки. Задачи, решаемые методами медицинской информатики.

Медицинская информатика – это наука, занимающаяся исследованием процессов получения, передачи, обработки, хранения, распространения, представления информации с использованием информационной техники в медицине и здравоохранении.

Объект изучения медицинской информатики – это информационные технологии, реализуемые в здравоохранении.

Основной целью медицинской информатики является оптимизация информационных процессов в медицине и здравоохранении за счет использования компьютерных технологий, обеспечивающая повышения качества охраны здоровья населения.

Задачи,решаемые мед иформатикой:

    мониторинг состояния здоровья разных групп населения,в т.ч. пациентов групп риска и лиц с социально значимыми заболеваниями

    консультативная поддержка в клинической медицине (диагностика,прогнозирование, лечение) на основе вычислительныз процедур и(или) моделирования логики принятия решений врачами

    переход к электронным историям болезни и амбулаторным мед. картам,включая расчеты по лечению застрахованных больных(обязательное и добровольное страхование по различным схемам)

    автоматизация функциональной и лабораторной диагностики

Медицинская диагностика

Разработка и внедрение информационных систем в области медицинских технологий является достаточно актуальной задачей. Анализ применения персональных ЭВМ в медицинских учреждениях показывает, что компьютеры в основном используются для обработки текстовой документации, хранения и обработки баз данных, статистики. Часть ЭВМ используется совместно с различными диагностическими и лечебными приборами. В большинстве этих областей использования ЭВМ применяют стандартное программное обеспечение – текстовые редакторы, СУБД и др. Поэтому создание информационной организационно-технической системы, способной своевременно и достоверно установить диагноз больного и выбрать эффективную тактику лечения, является актуальной задачей информатизации

Системы управления лечебным процессом

К системам управления процессами лечения и реабилитации относятся автоматизированные системы интенсивной терапии, биологической обратной связи, а также протезы и искусственные органы, создаваемые на основе микропроцессорной технологии.

В системах управления лечебным процессом на первое место выходят задачи точного дозирования количественных параметров работы, стабильного удержания их заданных значений в условиях изменчивости физиологических характеристик организма пациента.

Под автоматизированными системами интенсивной терапии понимают системы, предназначенные для управления состоянием организма в лечебных целях, а также для его нормализации, восстановления естественных функций органов и физиологических систем больного человека, поддержания их в пределах нормы. По реализуемой в них структурной конфигурации системы интенсивной терапии разделяют на два класса – системы программного управления и замкнутые управляющие системы.

К системам программного управления относятся системы для осуществления лечебных воздействий. Например, различная физиотерапевтическая аппаратура, оснащенная средствами вычислительной техники, устройства для вливаний лекарственных препаратов, аппаратура для искусственной вентиляции легких и ингаляционного наркоза, аппараты искусственного кровообращения.

3. Топологии сетей. Примеры. Технические характеристики. Технология Ethernet. Топология сети – геометрическая форма и физическое расположение компьютеров по отношению к друг другу. Топология сети позволяет сравнивать и классифицировать различные сети. Различают три основных вида топологии:

1) Звезда;

2) Кольцо;

ШИННАЯ ТОПОЛОГИЯ

При построении сети по шинной схеме каждый компьютер присоединяется к общему кабелю, на концах которого устанавливаются терминаторы.

Сигнал проходит по сети через все компьютеры, отражаясь от конечных терминаторов.

Шина проводит сигнал из одного конца сети к другому, при этом каждая рабочая станция проверяет адрес послания, и, если он совпадает с адресом рабочей станции, она его принимает. Если же адрес не совпадает, сигнал уходит по линии дальше. Если одна из подключённых машин не работает, это не сказывается на работе сети в целом, однако если соединения любой из подключенных машин м нарушается из-за повреждения контакта в разъёме или обрыва кабеля, неисправности терминатора, то весь сегмент сети (участок кабеля между двумя терминаторами) теряет целостность, что приводит к нарушению функционирования всей сети.

Достоинства:

1) Отказ любой из рабочих станций не влияет на работу всей сети.

2) Простота и гибкость соединений.

3) Недорогой кабель и разъемы.

4) Необходимо небольшое количество кабеля.

5) Прокладка кабеля не вызывает особых сложностей.

Недостатки

1) Разрыв кабеля, или другие неполадки в соединении может исключить нормальную работу всей сети.

2) Ограниченная длина кабеля и количество рабочих станций.

3) Трудно обнаружить дефекты соединений.

4) Невысокая производительность.

5) При большом объеме передаваемых данных главный кабель может не справляться с потоком информации, что приводит к задержкам.

ТОПОЛОГИЯ «КОЛЬЦО»

Эта топология представляет собой последовательное соединение компьютеров, когда последний соединён с первым. Сигнал проходит по кольцу от компьютера к компьютеру в одном направлении. Каждый компьютер работает как повторитель, усиливая сигнал и передавая его дальше. Поскольку сигнал проходит через каждый компьютер, сбой одного из них приводит к нарушению работы всей сети.

ТОПОЛОГИЯ «ЗВЕЗДА»

Топология «Звезда» - схема соединения, при которой каждый компьютер подсоединяется к сети при помощи отдельного соединительного кабеля. Один конец кабеля соединяется с гнездом сетевого адаптера, другой подсоединяется к центральному устройству, называемому концентратором (hub).

Устанавливать сеть топологии «Звезда» легко и недорого. Число узлов, которые можно подключить к концентратору, определяется возможным количеством портов самого концентратора, однако имеются ограничения по числу узлов (максимум 1024). Рабочая группа, созданная по данной схеме может функционировать независимо или может быть связана с другими рабочими группами.

Достоинства

1) Подключение новых рабочих станций не вызывает особых затруднений.

2) Возможность мониторинга сети и централизованного управления сетью

3) При использовании централизованного управления сетью локализация дефектов соединений максимально упрощается.

4)Хорошая расширяемость и модернизация.

Недостатки

1) Отказ концентратора приводит к отключению от сети всех рабочих станций, подключенных к ней.

2) Достаточно высокая стоимость реализации, т.к. требуется большое количество кабеля.

Локальная сеть Ethernet – стандарт организации локальных вычислительных систем, используемых для соединения устройств, находящихся на небольшом удалении друг от друга (в одном здании, группе зданий).

Сеть Ethernet может иметь шинную или звёздную топологию. В качестве среды передачи могут быть использованы любые типы кабелей, а также радиочастоты (radioEthernet).

Спецификация Ethernet предусматривает несколько стандартов физического уровня, определяющих вид кабельных систем и сетевой топологии при организации сетей.

4. Открытый и закрытый исходный код. Примеры ОС с открытым (ОПС) и закрытым исходным кодом. Перечень и характеристики достоинств и недостатков ОПС и проприаторных ОС Открытое программное обеспечение (англ. open-source software) - программное обеспечение с открытым исходным кодом. Исходный код таких программ доступен для просмотра, изучения и изменения, что позволяет пользователю принять участие в доработке самой открытой программы, использовать код для создания новых программ и исправления в них ошибок - через заимствование исходного кода, если это позволяет совместимость лицензий, или через изучение использованных алгоритмов, структур данных, технологий, методик и интерфейсов

Linux, Mozilla (ядро браузера Netscape), Apache (Web-сервер), PERL (язык подготовки Web-сценариев) и PNG (формат графических файлов), существует еще множество примеров очень популярного программного обеспечения, которое базируется на использовании открытых исходных кодов

Закрытый исходный код" - программа, лицензия которой не подходит под определение открытого ПО. Как правило, это означает, что распространяются только бинарные (откомпилированные) версии программы и лицензия подразумевает отсутствие доступа к исходному коду программы, что затрудняет создание модификаций программы. Доступ к исходному коду третьим лицам обычно предоставляется при подписании соглашения о неразглашении.

ОС MS Windows, минусы .

Сравнительно высокая стоимость. В самом дешевом варианте это более 50 долларов США, притом, что такая "дешевая" Windows, приобретаемая в комплекте с новым компьютером, "привязана" к этому компьютеру. А это значит, что, меняя компьютер, вам снова придется тратить деньги на Windows. Варианты Windows независимые от компьютера имеют цену ближе к двумстам долларов США и выше. И это стоимость Windows для одного компьютера. И если вам нужна ОС, например, на пять компьютеров, которые уже у вас есть (не новые), то придется выложить за пять копий Windows около тысячи долларов.

Очень большое количество вредоносных программ (так называемые компьютерные вирусы). Для версии Windows XP это особо серьезная проблема, которая вынуждает конечного пользователя нести дополнительные расходы. Либо на покупку хорошей антивирусной программы либо на обращение к специалистам в случаях, когда вредоносные программы делают невозможной нормальную работу ОС Windows. Эту проблему можно уменьшить за счет квалифицированной настройки ОС Windows и аккуратного ее использования в ситуациях риска, главная из которых Интернет.

преимущества и недостатки открытого ОС MS Windows, плюсы .

Поддержка очень большого ассортимента компьютерного оборудования. Какая бы экзотическая "железяка" вам не попалась, почти наверняка вы сможете ее использовать под Windows. Хотя быть может вам и потребуется время на поиски нужной программы-драйвера.

Огромное количество прикладных программ, на сегодняшний день это уже, наверное, более ста тысяч наименований. Для любой прикладной задачи на платформе Windows есть как минимум несколько десятков, для популярных задач существуют сотни программ. Большое количество специалистов, которые более или менее хорошо знают семейство ОС Windows. То есть, если вам потребуется помощь, вы ее найдете легко и за умеренную цену.

ОС GNU/Linux, плюсы .

Сравнительно низкая стоимость. В более или менее большом городе вполне реально получить диск с каким-либо дистрибутивом Linux по цене чистого CD\DVD диска, обратившись к энтузиастам, распространяющим Linux.. Также по почте можно совсем бесплатно получить CD диск с дистрибутивом Ubuntu Linux. При этом, имея всего одну физическую копию дистрибутива Linux, вы получаете право установить его на любое количество компьютеров. То есть, возвращаясь, к примеру, о пяти компьютерах, если вы купите одну копию дистрибутива Linux за 300 рублей это будут все ваши расходы на пять компьютеров - вам не нужно будет покупать пять копий. Итак, с одной стороны (Windows) около тысячи долларов, с другой стороны (Linux) примерно 300 рублей (или даже меньше этого).

Практическое отсутствие, по крайней мере, на сегодняшний день, вредоносных программ для этой платформы. Что позволяет избежать дополнительных расходов по предотвращению или ликвидации ущерба от вредоносных программ.

Независимость от разработчика. Если вам потребовалась какая-то функциональность, отсутствующая в ОС Linux, вы может ее добавить своими собственными усилиями. Такая возможность есть благодаря тому, что ОС Linux распространяется не только в бинарном виде, но и в исходных кодах, причем нет никаких запретов на модификацию этих исходных кодов.

ОС GNU/Linux, минусы .

Значительно меньшее, чем для платформы Windows, количество прикладных программ. Более того, если речь идет о некоторых программах - безусловных лидерах в своих прикладных областях, то под ОС Linux нет ни соответствующих версий самих этих программ, ни других, сопоставимых по функциональности программ. К таким прикладным программам относятся продукты компании Adobe, экономические программы 1С, программа инженерного проектирования AutoCAD, программы распознавания текстов (FineReader

Меньшее, чем для платформы Windows, количество хороших или приличных специалистов. То есть, если вам потребуется помощь, то найти человека, достаточно хорошо разбирающегося в Linux, будет не так просто. Вполне возможно, что и стоимость услуг такого специалиста будет выше, чем в случае с Windows.

5. Понятие о лицензии на ПО, лицензионном и нелицензионном ПО. Исходный код . Исхо ́ дный код (также исхо ́ дный текст ) - текст компьютерной программы на каком-либо языке программирования или языке разметки , который может быть прочтён человеком. В обобщённом смысле - любые входные данные для транслятора .

Лице ́ нзия на програ ́ ммное обеспе ́ чение - это правовой инструмент, определяющий использование и распространение программного обеспечения , защищённого авторским правом . Обычно лицензия на программное обеспечение разрешает получателю использовать одну или несколько копий программы, причём без лицензии такое использование рассматривалось бы в рамках закона как нарушение авторских прав издателя.

1.Определение информатики

Информатика - это техническая наука, изучающая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

Предмет информатики есть информационная технология, которая включает:

Аппаратное обеспечение средств вычислительной техники (ВТ);

Программное обеспечение средств ВТ;

Средства взаимодействия аппаратного и программного обеспечения;

Средства взаимодействия человека с аппаратными и программными средствами.

Взаимодействие - интерфейс.

Методы и средства взаимодействия человека с аппаратными и программными средствами называют пользовательским интерфейсом.

Интерфейсы:

· аппаратные;

· программные;

· аппаратно-программные.

Основная задача информатики - систематизация приемов и методов работы с аппаратными и программными средствами вычислительной техники.

Цель систематизации состоит в выделении, внедрении и развитии передовых, наиболее эффективных технологий, в автоматизации этапов работы с данными, а также в методическом обеспечении новых технологических исследований.

На всех этапах технического обеспечения информационных процессов для информатики ключевым понятием является эффективность.

Для аппаратных средств под эффективностью понимают отношение производительности оборудования к его стоимости (с учетом стоимости эксплуатации и обслуживания).

Для программного обеспечения под эффективностью понимают производительность лиц, работающих с ними (пользователей).

В программировании под эффективностью понимают объем программного кода, создаваемого программистами в единицу времени.

Информатика - практическая наука.

Выделим следующие направления для практических приложений:

1) архитектура вычислительных систем (приемы и методы построения систем, предназначенных для автоматической обработки данных);

2) интерфейсы вычислительных систем (приемы и методы управления аппаратным и программным обеспечением);

3) программирование (приемы, методы и средства разработки компьютерных программ);

4) преобразование данных (приемы и методы преобразования структур данных);

5) защита информации (обобщение приемов, разработка методов и средств защиты данных);

6) автоматизация (функционирование программно-аппаратных средств без участия человека);

7) стандартизация (обеспечение совместимости между вычислительными системами различных типов).

Термин ИНФОРМАТИКА

informacion automatique

информация автоматика

автоматическая обработка информации

Используется во Франции и странах Восточной Европы; в США и Западной Европе – Computer Science (наука о средствах вычислительной техники).

Количество компьютеров в мире более 500 млн. единиц!

Каждый по-своему уникален.

В среднем 1 раз в 1,5 года удваиваются основные параметры аппаратных средств;

1 раз в 2-3 года меняются поколения программного обеспечения;

1 раз в 5-7 лет меняется база стандартов, протоколов и интерфейсов.

Отличие ИНФОРМАТИКИ от других технических наук заключается в том, что ее предмет меняется ускоренными темпами.

От специалистов требуется широкий уровень знаний и практических навыков.

2.История развития вычислительной техники

1623г - механическое устройство для выполнения сложения (на базе механических часов); автор- Вильгельм Шикард; университет Тюбингена, Германия.

1642г - француз Блез Паскаль разработал более компактное суммирующее устройство - первый механический калькулятор, выпускался серийно .

1673г – немец Г. В. Лейбниц создал механический калькулятор, который выполнял 4 арифметических действия.

В 18 веке (эпоха Просвещения) появились более совершенные модели, но они оставались механическими .

Идея программного управления вычислениями принадлежит английскому математику Чарльзу Бэббиджу (1792-1871).

Аналитическая машина Бэббиджа.

Огаста Ада Лавлейс (леди Байрон).

В 20 веке идеи Бэббиджа получили развитие в работах Джона фон Неймана (1941, 1946гг).

3.Представление информации в ЭВМ

Информация- это сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специализированным устройством для обеспечения целенаправленной деятельности.

Информация:

текстовая

числовая

Информация графическая

звуковая

видео и т. д.

Для представления информации в ЭВМ используется принцип двоичного кодирования, т. е. элементы информации любого типа кодируются последовательностями двух знаков 0 и 1.

0 и 1 – цифры двоичной системы счисления (binary digit).

Система счисления – совокупность приемов наименования и записи чисел.

Примеры.

Единицы представления информации

8 битов=1 байт;

1Кбайт=210 байтов (1024 байтов);

1Мбайт=210 Кбайтов =220 байтов;

1Гбайт=210 Мбайтов =220 Кбайтов.

4.Принципы построения ЭВМ

ЭВМ - комплекс технических и программных средств для автоматизации подготовки и решения задач пользователей.

Абстрактная модель ЭВМ - машина фон Неймана.

Рисунок 1- Машина фон Неймана

Обозначения:

ЦП - центральный процессор;

УУ – устройство управления;

АЛУ – арифметико-логическое устройство;

передача данных;

передача управляющих сигналов.

Принципы фон Неймана:

1. принцип линейности и однородности памяти;

2. принцип хранимой программы;

3. принцип неразличимости команд и данных;

4. принцип последовательного исполнения команд;

5. принцип автоматической работы (программного управления).

5.Классификация ЭВМ

Классификация по назначению:

· большие ЭВМ;

· мини ЭВМ;

· микро ЭВМ;

· персональные ЭВМ (ПЭВМ, ПК).

ПЭВМ – самый массовый тип, и составляют ≈80% от всех компьютеров в мире.

Фирма IBM- крупнейший производитель компьютеров; до 2005г 80% ее продукции – ПЭВМ.

Одна из основных характеристик ПЭВМ - тип используемого микропроцессора (м/пр).

Рынок м/пр очень динамичен: каждые год-два обновляются основные типы.

Intel: Pentium, Celeron.

AMD: Athlon, Sempron.

Важнейшие характеристики ПК – объем оперативной памяти (ОП) и быстродействие.

Объем памяти определяется количеством хранимой информации, быстродействие - количеством операций в единицу времени (тактовой частотой процессора).

Объем ОП 32 Кб – 4Гб;

частота 1Ггц и более.

Память ПК:

· оперативная память (32 Кб – 4Гб);

· кэш-память(256Кб-2Мб);

· внешняя память (емкость зависит от типа запоминающего устройства).

Внешняя память:

· дискета (1,4Мб);

· винчестер или жесткий диск (десятки и сотни Гб);

· компакт-диски или CD-ROM (сотни Мб);

· DVD-диски (десятки Гб);

· флэш-память (64,128,256,512Мб,

· магнитооптические диски (десятки Гб).

Емкость памяти определяет, какие программные продукты могут быть установлены на ПК.

Например, ОС Windows 2000 требует объем винчестера не менее 600 Мб и не менее 64 Мб ОП;

ОС Windows XP- соответственно 1Гб и 256Мб.

ПК-это совокупность аппаратных и программных средств, вычислительная система.

Базовая

аппаратная конфигурация ПК:

1. системный блок;

2. монитор;

3. клавиатура;

4. манипулятор мышь.

Системный блок – узел, внутри которого расположены основные компоненты ПК: процессор, память, видеокарта.

Монитор – устройство отображения информации; характеризуется размером видимой части экрана по диагонали; измеряется в дюймах(17’’,19’’и т. д.).

Для ЭЛ мониторов качество-размер зерна (0,24мм).

Для ЖК мониторов:

разрешение 1280х1024;

угол обзора (160о);

яркость 300;

контрастность 1000.

Клавиатура и мышь - устройства управления компьютером.

Монитор и клавиатура – простейший интерфейс пользователя.

Периферийные устройства.

Развиваемые компетенции:

знать

  • определения и виды информации;
  • основные меры и единицы измерения информации;

уметь

Выбирать способ измерения информации для конкретной задачи;

владеть

  • вопросами истории развития информатики как научного направления;
  • вопросами структуризации информатики;
  • знаниями законов диалектики в применении к понятию логической информации.

Общепризнано, что роль информатизации возрастает, особенно в связи с переходом на следующую ступень цивилизации – информационное общество. В то же время, несмотря на достаточно длительный период осмысления понятий "информация" и "информатика", все еще не существует единой трактовки этих понятий. Поэтому в данной главе приводятся некоторые сведения из истории развития термина "информатика" (параграф 1.1), дастся представление об информации и ее основных видах (параграф 1.2), о подходах к измерению и оценке информации (параграф 1.3), характеризуется диалектическая сущность понятия "информация".

Понятие об информатике как научном направлении

Из истории развития термина "информатика"

Термин информатика использовался первоначально в зарубежных научных публикациях (нем. informatik, фр. informatique, англ, informatics) для названия научно-практического направления, занимающегося автоматизированной обработкой информационных данных.

Этот термин впервые был введен в 1957 г. в Германии К. Штейнбухом (К. Steinbuch) . Затем – в 1962 г. во Франции Ф. Дрейфусом (F. Dreyfus) , который образовал его как слияние французских слов information и automatique. В том же 1962 г. этот термин использовал в США У. Ф. Бауэр для названия фирмы, занимающейся автоматизированной переработкой информации.

В отечественной научной литературе термин "информатика" был первоначально использован в 1963 г. профессором Московского энергетического института Ф. Е. Темниковым , который определил информатику как науку об информации вообще, состоящую из 3-х основных частей:

  • 1) теория информационных элементов ;
  • 2) теория информационных процессов ;
  • 3) теория информационных систем.

В журнале "Известия вузов: Электромеханика", № 11, 1963 г. Федор Евгеньевич Темников опубликовал всего одну страничку, начав ее фразой: "Давно ощущается потребность в интегральной научной дисциплине, связывающей воедино многочисленные вопросы сбора, передачи, обращения, переработки и использования информации" и предложил программу создания такой дисциплины, "...могущей послужить важным теоретическим стержнем автоматики, телемеханики, измерительной и вычислительной техники, связи и радиолокации, бионики и кибернетики". Проект программы Ф. Е. Темников представил в виде таблицы со столбцами "Теория информационных элементов", "Теория информационных процессов" и "Теория информационных систем".

В таком значении термин использовался в технической литературе в начальный период создания автоматизированных информационных систем. Однако в последующем это определение долгое время оставалось лишь историческим фактом и не было оценено должным образом. Возможно, потому что было опубликовано только в специальном журнале "Известия вузов: Электромеханика".

В 1966 г. термин "информатика" был введен вместо термина "теория научной информации". Директором Всесоюзного института научной и технической информации (ВИНИТИ) АН СССР профессором А. И. Михайловым и научными сотрудниками ВИНИТИ А. И. Чёрным и Р. С. Гиляревским информатикой была названа "...научная дисциплина, изучающая структуру (не конкретное содержание) и свойства научной информации, а также закономерности научно-информационной деятельности, ее теорию, историю, методику и организацию" . Появлению этого термина предшествовала рекомендация директора Института проблем передачи информации (ИППИ) АН СССР члена-корреспондента А. А. Харкевича , содержащаяся в его отзыве 11 октября 1962 г. на подготовленную коллективом сотрудников ВИНИТИ Проблемную записку "Научная информация (Вопросы советской науки)".

В таком значении в советской научно-технической литературе термин "информатика" стал широко известен. Благодаря работам А. И. Михайлова, А. И. Чёрного и Р. С. Гиляревского он использовался на протяжении достаточно длительного времени в сфере бурно развивающегося в тот период направления "Научно-техническая информация" .

В последующем термин "информатика" стал употребляться в нашей стране в более узком смысле применительно к техническим и программным средствам хранения и обработки данных на электронно-вычислительных машинах. Новое значение соответствовало немецкому и французскому, в то время как в США и Великобритании применялся термин computer science – компьютерная наука.

В 1978 г. Международным конгрессом в Японии было принято следующее определение: "Понятие информатики охватывает области, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием системы обработки информации, включая машины, оборудование, математическое обеспечение, организационные аспекты, а также комплекс промышленного, коммерческого, административного, социального и политического воздействия" .

Академик А. А. Дородницын определил информатику как науку о преобразовании информации, которая базируется на вычислительной технике.

В таком понимании информатика включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные, вроде анализа алгоритмов, так и довольно конкретные, например, разработка языков программирования.

Широкому распространению термина в таком значении способствовал академик А. П. Ершов , основавший школьную информатику, обеспечившую широкое распространение компьютерной грамотности в школе .

Термин оказался удобным как краткое название курса о применении ЭВМ для обработки данных в учебном процессе школы, поскольку школьникам сложно объяснить понятия информационных процессов, информационных систем, поиск, хранение и обработку текстовой информации.

Однако такое сужение смысла термина "информатика" нежелательно в учебном процессе вуза, поскольку уже достаточно давно стало понятно, что информация – важнейший ресурс социально-экономических организаций, обеспечивающий их развитие, и нужно уметь оценивать содержание, смысл информации как интеллектуального ресурса.

Это понимание приходило постепенно.

В 1985 г. академик А. А. Самарский обращает внимание на новую научную методологию, возникшую благодаря информатике: "Она основана на развитии в широком применении методов математического моделирования и вычислительного эксперимента и служит ближайшим стратегическим резервом ускорения научно-технического прогресса. Сущность математического моделирования и его главное преимущество состоит в замене исходного объекта соответствующей математической моделью и в дальнейшем ее изучении (экспериментирование с нею) на ЭВМ с помощью вычислительно-логических алгоритмов. Математическое моделирование представляет собой естественное развитие и обобщение методов научного исследования, соединенных с современной информационной технологией. Цикл вычислительного эксперимента объект – модель – алгоритм – программа – ЭВМ – управление объектом отражает основные этапы процесса познания в нынешнем компьютерном воплощении. Здесь органично соединяются сильные стороны теоретических методов и натурного эксперимента. Работа с моделью, а не с объектом, оборачивается оперативным получением подробной и наглядной информации, вскрывающей его внутренние связи, качественные характеристики и количественные параметры. Многократно уменьшаются материальные и трудовые затраты, присущие традиционным экспериментальным подходам, дающим, как правило, лишь крупицы нужной информации. Вычислительный эксперимент не подвластен каким-либо ограничениям – математическая модель может быть безопасно испытана в любых мыслимых и немыслимых условиях" .

Академик Н. Н. Моисеев считает, что "информатика – это некая синтетическая дисциплина, которая включает в себя и разработку новой технологии научных исследований и проектирования, основанные на использовании электронной вычислительной техники, и несколько крупных научных дисциплин, связанных с проблемой общения с машиной, и, наконец, с созданием машины" .

В ряде определений информатики на первое место ставили собственно информацию.

Директор Института проблем передачи информации АН СССР В. И. Сифоров считал, что "в основу определения должны быть положены действия над информацией. Информатика развивается под действием потребности общества и согласно внутренней логике развития. В основе этого развития лежат закономерности процессов в ЭВМ, закономерности развития ЭВМ. Информатика имеет дело не с конкретными формами материи, а с категориями: информация, модель и т.п. Информатика – комплексная дисциплина – это наука (фундаментальные исследования) и отрасль производства (опытно-конструкторские работы и совершенствование технологий), а кроме того, и инфраструктурная область (эксплуатация информационных систем)" .

Заместитель директора ВИНИТИ в 1970-е гг. Ю. И. Шемакин в книге "Введение в информатику" отмечает, что "основной задачей информатики является изучение закономерностей, в соответствии с которыми происходят создание, преобразование, хранение, передача и использование информации всех видов, в том числе с применением современных технических средств".

Академик Б. Н. Наумов в предисловии к сборнику подчеркивает, что информатика – это "естественная наука, изучающая общие свойства информации, процессы, методы и средства ее автоматизированной обработки". При этом под обработкой информации понимаются процессы ее восприятия, хранения, преобразования, перемещения и вывода (ввода) с применением средств вычислительной техники".

В документах ЮНЕСКО 1986–1988 гг. термину "информатика" дается широкое толкование . Утверждается, что этот термин охватывает собственно информацию, ее сбор, анализ и обработку, а также соответствующие аппаратные средства, включая микропроцессоры или другие электронные системы. Информатика рассматривается как крупное научное направление, заслуживающее активного развития в интересах всего человечества, которое способно (при соответствующем освоении ее методов и средств) помочь человеку полнее использовать информационные ресурсы в интересах научно-технического прогресса и социального развития.

В 1988 г. академик А. П. Ершов в Математическом энциклопедическом словаре дал следующее определение информатики как науки, отрасли промышленности и разновидности человеческой деятельности: "Информатика – 1) находящаяся в становлении наука, изучающая законы и методы накопления, передачи и обработки информации с помощью ЭВМ; 2) родовое понятие, охватывающее все виды человеческой деятельности, связанные с применением ЭВМ".

Роль теории искусственного интеллекта в информатике была обоснована академиком Г. С. Поспеловым .

Известный специалист в области информатики доктор технических наук В. Д. Ильин предложил дать следующее определение информатики: "Предметом информатики как науки будем считать процесс создания, накопления и применения знаний" .

В формулировке одного из ведущих специалистов в области создания крупных автоматизированных систем доктора технических наук К. К. Колина "Информатика является общенаучной дисциплиной, которая изучает свойства, закономерности, процессы, методы и средства формирования, хранения и распространения знаний в природе и обществе" . В 2000 г. им было издано учебное пособие , в котором он развивает представление об информатике как междисциплинарной науке о закономерностях и формах движения информации в природе и обществе.

В некоторых работах на основе сопоставления различных определений информатики предлагается рассматривать ее как науку о формализованном общении.

Во многих учебниках и учебных пособиях информатика трактуется как наука о законах и методах получения и измерения, накопления и хранения, переработки и передачи информации с применением математических и технических средств. И в качестве краткого определения используется исходное определение К. Штейнбуха и Ф. Дрейфуса, согласно которому информатика – ИНФОРМАция плюс автомаТИКА, что сужает представление о современной информатике.

В силу ряда объективных причин в учебном процессе вузов практически не используется понятие информатики в трактовке А. И. Михайлова – А. И. Чёрного – Р. С. Гиляревского, предложенной ими в 1966 г. для названия науки о научно-технической информации.

Очевидно, что важная функция информатики состоит в разработке методов и средств преобразования информации с использованием компьютера, а также в применении их при организации технологического процесса преобразования информации. В то же время, выполняя эту функцию, информатика как прикладная наука должна решать более широкий спектр задач исследовать информационные процессы в технических и социально-экономических системах, разрабатывать и (или) адаптировать технические средства и создавать новые технологии для преобразования информации на основе результатов, полученных в ходе исследования информационных процессов, решать научные и инженерные проблемы создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах человеческой деятельности.

При этом информатика исследует разнородные аспекты:

  • технические, связанные с изучением методов и средств падежного сбора, хранения, передачи, обработки и выдачи информации;
  • синтаксические, связанные с решением задач по формализации и автоматизации некоторых видов научно-информационной деятельности, в частности индексирование, автоматическое реферирование, машинный перевод;
  • семантические, определяющие способы описания смысла информации, изучающие языки ее описания;
  • прагматические, представляющие собой методы анализа и преобразования информации для решения конкретных прикладных задач.

На основе обобщения различных точек зрения в современном представлении можно дать следующее обобщающее определение: информатика – научная дисциплина, изучающая структуру и общие свойства информации, закономерности процессов обмена информацией от непосредственного устного и письменного общения специалистов до формальных процессов обмена посредством различных носителей информации. Важной сферой информатики является научно-информационная деятельность по сбору, переработке, хранению, поиску и распространению научно-технической информации.

  • При подготовке данного раздела использовались следующие работы: Колин К. К. Теоретические проблемы информатики. Т. 1. Актуальные философские проблемы информатики / под общ. ред. К. И. Курбакова. М.: КоСИнф, 2009; Чёрный Ю. Ю. Полисемия в науке: когда она вредна? (на примере информатики) / Ю. Ю. Чёрный // Открытое образование = = Open education. М, 2010. Sfe 6. С. 97–107 // URL: e-joe.ru/i-joe/i-joe_01/files/chomiy.pdf.
  • Steinbuch К. Informatik: Automatische Informations verarbeitung / K. Steinbuch // SEG-Nachrichten (TechnischeMitteilungender Standard Elektrik Gruppe). Berlin, 1957. Nr. 4. S. 171.
  • Dreyfus Ph. L"informatique / Ph. Dreyfus // Gestion, 1962. Vol. 5. June. P. 240-241.

ИНФОРМА́ТИКА (англ. informatics), наука об извлечении информации из сообщений, создании информационных ресурсов, программировании поведения машин и о других сущностях, связанных с построением и применением человеко-машинной среды решения задач моделирования, проектирования, взаимодействия, обучения и др. Изучает свойства информации, методы её извлечения из сообщений и представления в заданной форме; свойства, методы и средства информационного взаимодействия; свойства информационных ресурсов, методы и средства их создания, представления, сохранения, накопления, поиска, передачи и защиты; свойства, методы и средства построения и применения программируемых машин и человеко-машинной среды решения задач.

Научная продукция информатики

Научная продукция информатики служит методологическим основанием построения человеко-машинной среды решения задач (рис. 1), относящихся к различным областям деятельности .

Результаты исследований сущностей (в науке обычно называемых объектами) представлены их символьными и/или физическими моделями. Символьные модели – это описания добытых знаний [см. Символьное моделирование (s-моделирование)], а физические – прототипы изучаемых объектов, отражающие их свойства, поведение и др. Научный результат – модель системы знаний (или составляющая ранее определённой и опубликованной модели), описывающая совокупность объектов, включающую изучаемый объект, и связи между ними. Описание модели представлено в форме сообщения, рассчитанного на распознавание и интерпретацию научным сообществом. Значение результата зависит от предсказательной силы, воспроизводимости и применимости модели, а также от свойств сообщения, содержащего её описание.

Примерами результатов, сыгравших выдающуюся роль в методологическом обеспечении построения человеко-машинной среды решения задач, могут служить: изобретённая Дж. фон Нейманом модель цифровой электронной машины с хранимыми в общей памяти инструкциями программы и данными [известная как модель фон Неймана (the von Neumann model) и архитектура фон Неймана (the von Neumann architecture)] ; изобретённые создателем Веба (см. Всемирная паутина ) Т. Бернерс-Ли протокол HTTP (англ. HyperText Transfer Protocol – протокол передачи гипертекста ), являющийся протоколом прикладного уровня, определяющим правила передачи сообщений в гипермедийных (см. Мультимедиа ) системах, и унифицированный идентификатор ресурса URI (англ. Uniform Resource Identifier), ставший стандартом записи адреса ресурса, размещённого в сети Интернет . Трудно найти в наши дни (2017) область деятельности, где бы не применялась научная продукция информатики. На её основе созданы электронная почта, Веб, поисковые системы, IP-телефония, интернет вещей и другие интернет-сервисы (см. Интернет ); цифровая аудио-, фото- и видеозапись; системы автоматизированного проектирования (САПРы); компьютерные тренажёры и роботы (см. Компьютерное моделирование ), системы цифровой связи, навигационные системы, 3D-принтеры и др.

Основные понятия

Продолжающееся становление информатики сопровождается развитием её понятийного аппарата и уточнением предмета исследований. В 2006 в Институте проблем информатики Российской академии наук (ИПИ РАН) была создана новая область исследований – символьное моделирование произвольных объектов в человеко-машинной среде (сокращённо – с имвольное моделирование или s-моделирование). Один из первых научных проектов в этой области был посвящён методологии построения символьной модели системы знаний информатики в человеко-машинной среде. . В созданной в 2009 теории символьного моделирования (s-моделирования) была предложена очередная версия символьной модели ядра системы понятий информатики, включающего следующие понятия.

Сообщение (англ. message) рассматривается как конечная упорядоченная совокупность символов (визуальных, аудио- и др.; см. Символ в информатике) или её код (см. Код в информатике), удовлетворяющий протоколу взаимодействия источника с получателем. Существование сообщения предполагает наличие источника сообщения, получателя, носителя, среды передачи, средства доставки, протокола взаимодействия источника с получателем. В человеко-машинной среде решения задач (s-среде) люди с помощью программируемых машин (s-машин) формируют сообщения, представляя их на языках запросов, программирования и др.; выполняют различные преобразования (напр., из аналоговой формы в цифровую и обратно; из несжатой в сжатую и обратно; из одной формы представления документа в другую); распознают, используют сообщения для конструирования новых сообщений (программ, документов и др.); интерпретируют на моделях систем понятий (которые хранятся в памяти интерпретатора также в форме сообщений); обмениваются сообщениями, используя при этом программно-аппаратно реализованные системы правил (сетевые протоколы, см. Компьютерная сеть ); сохраняют и накапливают сообщения (создавая электронные библиотеки, энциклопедии и другие информационные ресурсы), решают задачи поиска и защиты сообщений.

Интерпретатор сообщения изучается как построитель выходного сообщения по входному в соответствии с заданной системой правил интерпретации. Необходимым условием построения интерпретатора сообщений является существование моделей входного и выходного языков, а также моделей систем понятий, на которых должны интерпретироваться сообщения, составленные на входном и выходном языках.

Данные (англ. data) – сообщение, необходимое для решения некоторой задачи или совокупности задач, представленное в форме, рассчитанной на распознавание, преобразование и интерпретацию решателем (программой или человеком). Человек воспринимает данные (текст, изображения и др.) в символьной форме, а программа компьютера или компьютерного устройства (смартфона, цифровой фотокамеры и др.) – в кодовой.

Информация (англ. information) изучается как результат интерпретации сообщения на модели системы понятий [см. Символьное моделирование (s-моделирование)]. Для извлечения информации из сообщения необходимо иметь принятое сообщение, представленное в форме, рассчитанной на распознавание и интерпретацию получателем сообщения; хранящиеся в памяти интерпретатора модели систем понятий, среди которых – необходимая для интерпретации принятого сообщения; механизмы поиска необходимой модели, интерпретации сообщения, представления результата интерпретации в виде, рассчитанном на получателя (рис. 2).

Например, результат интерпретации сообщения ma , представленного на языке a , полученный переводчиком (человеком или роботом) в виде сообщения mb на языке b , – информация, извлечённая из сообщения ma .

Программируемая задача (s-задача) рассматривается как набор {Formul , Rulsys , Alg , Prog }, где Formul – постановка задачи; Rulsys – множество систем обязательных и ориентирующих правил решения задачи , поставленных в соответствие Formul ; Alg – объединение множеств алгоритмов, каждое из которых соответствует одному элементу из Rulsys ; Prog – объединение множеств программ, каждое из которых поставлено в соответствие одному из элементов Alg . Для каждого элемента из Rulsys , Alg и Prog должно быть задано описание применения. Описания применения элементов Rulsys включают спецификацию типа решателя задачи (автономная s-машина, сетевая кооперация s-машин, кооперация «человек – s-машина» и др.), требование к информационной безопасности и др. Описания применения элементов из Alg включают данные о допустимых режимах работы решателя задачи (автоматический локальный, автоматический распределённый, интерактивный локальный и др.), о требованиях к полученному результату и др. Описания применения программ включают данные о языках реализации, операционных системах и др.

Алгоритм – формализованное описание конечного набора шагов решения задачи, соответствующего одному из элементов Rulsys и позволяющего поставить в однозначное соответствие заданному набору входных данных результирующий набор выходных данных.

Программа – алгоритм, реализованный на языке программирования высокого уровня, машинно-ориентированном языке и/или в системе машинных команд. Представлена в форме сообщения, определяющего поведение s-машинного решателя задачи с заданными свойствами. Существует в символьном, кодовом и сигнальном воплощениях, связанных отношениями трансляции (см. Компилятор в информатике).

Символ (англ. symbol) – заменитель природного или изобретённого объекта, обозначающий этот объект и являющийся элементом определённой системы построения символьных сообщений (текстов, нотных записей и др.), рассчитанных на восприятие человеком или роботом. Например, русский алфавит – система текстовых символов; буква А в этой системе – символ, заменяющий соответствующий звук из системы речевых аудиосимволов русского языка; букве А соответствует тактильный фактурный символ (воспринимаемый осязанием пальцами рук) в системе представления текстовых сообщений для слепых, известной как система Брайля (см. Брайлевский шрифт ). Множество визуальных, аудио- и других символов, выбранных для построения сообщений определённого типа, рассматривается как множество элементарных конструктивных объектов, каждый из которых наделён набором атрибутов и совокупностью допустимых операций. Создание конструкций из элементов этого множества определено системой правил построения символьных моделей [подробнее см. в статье Символ в информатике (s-символ)].

Код (англ. code) – заменитель символа или символьного сообщения, используемый для их представления в компьютерах, смартфонах и других программируемых машинах и предназначенный для построения, сохранения, передачи и интерпретации символьных сообщений [подробнее см. в статье Код в информатике (s-код )].

Сигнал (англ. signal) – оптическое, звуковое или другое воздействие, воспринимаемое органами чувств человека или сенсорами машины, либо представление кода в виде частоты электромагнитного излучения, композиций значений электрического напряжения, либо другое, рассчитанное на восприятие аппаратными средствами машины (например, центральным процессором компьютера, микропроцессором автомобильного навигатора). Символы, коды и сигналы связаны между собой отношениями преобразования. Каждому символу и символьной конструкции, рассчитанным на восприятие человеком или роботом, могут быть поставлены в однозначное соответствие коды, предназначенные для манипулирования ими с помощью программных средств компьютеров и компьютерных устройств.

Модель системы понятий. S-модель Cons системы понятий рассматривается как пара {ConsSet , ConsRel }, где ConsSet – множество понятий; ConsRel – семейство связей, заданных на ConsSet . Определение системы понятий – описание её модели, сопровождаемое указанием области применимости. Описание представлено в форме сообщения, рассчитанного на интерпретацию получателем, представление, сохранение, распространение, накопление и поиск в человеко-машинной среде интеллектуальной деятельности. В систему понятий, считающуюся определённой, не должны входить понятия, не имеющие определений (и при этом не относящиеся к понятиям-аксиомам). Определение области применимости модели – описание типов корреспондента (кому адресовано определение), цели, в процессе достижения которой определение имеет смысл (классы задач, при изучении которых определение может быть полезно), стадии, на которой целесообразно использовать определение (концепция, методология решения и т. д.).

Модель системы знаний. Понятие «знать» в s-моделировании [см. Символьное моделирование (s-моделирование)] определено как состояние получателя сообщения, когда выходное сообщение, полученное в результате интерпретации входного, распознаётся как уже известное и не требует изменений в моделях систем понятий, хранящихся в памяти получателя сообщения. Понятие «знание» определено как комплексное умение извлекать информацию из сообщений, содержащих условия задач определённого класса (это могут быть задачи распознавания образов, перевода с одного языка на другой или иные классы задач). S-модель системы знаний рассматривается как триада {Cons , Lang , Interp }, где Cons – s-модель системы понятий; Lang – s-модель совокупности языков сообщений, интерпретируемых на Cons ; Interp – s-модель совокупности интерпретаторов на Cons сообщений, составленных на языках из Lang .

Интерпретация сообщения на модели Cons включает:

1) построение выходного сообщения (извлечение информации) по заданному входному (сообщения представлены на языках из совокупности Lang );

2) анализ выходного сообщения (требуются ли изменения в модели Cons );

3) если требуется, то изменение модели Cons ; если нет – завершение.

Например, мозговым центром современной системы автоматизированного проектирования (САПР) является система знаний. От того, насколько она удачно построена, зависит продуктивность проектирования.

Программируемая машина (s-машина) – программно-аппаратное сооружение для решения задач. Суперкомпьютеры, мейнфреймы, персональные компьютеры, ноутбуки, смартфоны, навигаторы, цифровые фото- и видеокамеры – всё это s-машины. Клавиатуры, мыши, трекболы, тачпады и другие устройства ввода – составляющие s-машин, выполняющие преобразования символов в коды, воспринимаемые драйверами (см. Драйвер в информатике) соответствующих устройств. Мониторы персональных компьютеров, дисплеи ноутбуков, навигаторов и др. выполняют преобразования кодов, порождаемых видеоконтроллерами, в символьные композиции, рассчитанные на зрительный канал человека.

(s-среда) – объединение компьютерных сетей и отдельных программируемых машин, используемых для решения различных задач. Средство информатизации различных видов деятельности. S-среда должна обеспечивать представление цифровых кодов символьных моделей и манипулирование такими кодами с помощью s-машин. В основе современных цифровых технологий связи, автоматизированного проектирования и др. лежит идея, замечательная по последствиям своей реализации, – свести всё символьное многообразие к цифровым кодам [а каждый из них – к единому коду (до сих пор им остаётся двоичный код)] и поручить работу с кодами программируемым машинам, объединённым в человеко-машинную среду решения задач.

Информационное взаимодействие в s-среде (рис. 3) изучается как совокупность интерфейсов типа «человек – человек», «человек – программа», «человек – аппаратное средство программируемой машины», «программа – программа», «программа – аппаратное средство» (см. Интерфейс Порт в информатике). Человек воспринимает входные аналоговые сигналы (световые, звуковые и др.) с помощью зрительного, слухового и других входных устройств биоинтеллекта (биологической системы, обеспечивающей функционирование интеллекта). Интересующие его сигналы он преобразует в символьные визуальные, аудио- и другие конструкции, используемые в процессах мышления. Выходные сигналы биоинтеллекта реализуются посредством жестов (например, используемых при вводе с клавиатуры и мыши), речи и др. . Входом и выходом программ служат коды входных данных и результата (см. Код в информатике), а входом и выходом аппаратных средств – сигналы. Входные аналоговые сигналы преобразуются в цифровые с помощью аналого-цифровых преобразователей (АЦП), а выходные цифровые – в аналоговые с помощью цифро-аналоговых преобразователей (ЦАП).

В современной (2017) s-среде природные средства восприятия сигналов человеком, их обработки и сохранения дополнены изобретёнными: цифровыми фото- и видеокамерами, смартфонами и др. Широко известная часть технологий информационного взаимодействия представлена быстро развивающимися Интернет-сервисами. Для взаимодействия между людьми используются электронная почта (англ. e-mail), различные виды интернет-связи [интернет-телефонии (IP-телефония); например реализованной в интернет-сервисе Skype; мессенджеры (англ. messenger – связной); например интернет-сервис Telegram)], социальные сети (англ. social networks) и др. Для взаимодействия используемых людьми вещей (систем освещения, поддержания температуры и др.) между собой и с внешней средой применяются информационные технологии «интернета вещей» (см. Интернет ).

Классы базовых задач

На основании изучения свойств и закономерностей символьного моделирования (s-моделирования) определены следующие классы базовых задач информатики .

Представление моделей произвольных объектов , рассчитанных на восприятие человеком и программируемыми машинами, связано с изобретением языков сообщений, удовлетворяющих определённым требованиям. В этом классе изучаются системы символов и кодов, используемые соответственно в человеко- и машинно-ориентированных языках. К первым отнесены языки спецификации, программирования, запросов, ко вторым – системы машинных команд. Этот класс включает также задачи представления данных. В него входят задачи представления моделей систем понятий, на которых интерпретируются сообщения. На верхнем уровне задачной иерархии этого класса находится представление моделей систем знаний.

Преобразование типов и форм представления символьных моделей позволяет устанавливать соответствия между моделями. Задачи преобразования типов (например, речевой в текстовый и обратно) и форм (например, аналоговой в цифровую и обратно; несжатой в сжатую и обратно; *.doc в *.pdf) – необходимое дополнение к задачам представления моделей.

Распознавание сообщения предполагает необходимость его представления в формате, известном получателю. При выполнении этого условия для распознавания сообщения решаются задачи сопоставления с моделями-образцами, либо сопоставления свойств распознаваемой модели со свойствами моделей-образцов. Например, в задаче биометрической идентификации человека его биометрические данные (входное сообщение) сопоставляются с биометрическим образцом из базы данных биометрической системы.

Конструирование моделей систем понятий, систем знаний, интерпретаторов сообщений на моделях систем понятий; моделей задач, технологий программирования, взаимодействия в s-среде; моделей архитектур s-машин, компьютерных сетей, сервис-ориентированных архитектур; моделей сообщений и средств их построения, документов и документооборота. На верхнем уровне иерархии этого класса находятся задачи конструирования моделей s-среды и технологий символьного моделирования.

Интерпретация сообщений (извлечение информации) предполагает существование принятого сообщения, модели системы понятий, на которой оно должно интерпретироваться, и механизма интерпретации. Решение задач в человеко-машинной среде – интерпретация исходных данных (входное сообщение) на модели системы понятий, представленной в алгоритме. Результат решения – выходное сообщение (информация, извлечённая из входного сообщения). Если интерпретатором служит исполняемая программа, то исходные данные, программа и результат решения задачи представлены соответствующими кодами (см. Код в информатике). Для микропроцессора программируемой машины сообщения, подлежащие интерпретации, и результаты интерпретации представлены сигналами, соответствующими кодам машинных команд и данных. Например, при съёмках цифровой фотокамерой сообщение (в виде светового сигнала) воздействует на светочувствительную матрицу, распознаётся ею, а затем преобразуется в цифровой код изображения, который интерпретируется программой, улучшающей качество изображения. Полученный результат преобразуется и записывается (на встроенный накопитель камеры или карту памяти) как графический файл .

Обмен сообщениями: изучаются задачи построения интерфейсов типа «человек – человек», «человек – программа», «человек – аппаратное средство программируемой машины», «программа – программа», «программа – аппаратное средство» (см. Интерфейс в информатике), «аппаратное средство – аппаратное средство» (см. Порт в информатике); задачи обмена сообщениями в человеко-машинной среде решения задач (с типизацией отправителей и получателей; средств отправки, передачи и получения сообщений; сред передачи сообщений). Изобретаются системы правил обмена сообщениями (сетевые протоколы); архитектуры сетей; системы документооборота. Например, сообщениями обмениваются процессы операционных систем (ОС), программы s-машин в компьютерной сети, пользователи электронной почты и др.

Сохранение, накопление и поиск сообщений: изучаются и типизируются память и накопители, механизмы управления ими; формы сохранения и накопления; носители, методы сохранения, накопления и поиска; базы данных и библиотеки программ. Изучаются модели предмета поиска (по образцу, по признакам, по описанию свойств) и методов поиска.

Информационная защита: изучаются задачи предотвращения и обнаружения уязвимостей, контроля доступа, защиты от вторжений, вредоносных программ, перехвата сообщений и несанкционированного применения.

Области исследований

Наиболее важные научные идеи, влияющие на развитие информатики, воплощены в методологическом обеспечении построения средств поддержки процессов познания, информационного взаимодействия и автоматизированного решения различных задач. На современном этапе (2017) развития информатики актуальными являются следующие взаимосвязанные комплексы областей исследований.

Автоматизация вычислений (вычисления с помощью программируемых машин): изучаются модели, архитектуры и системы команд программируемых машин; алгоритмизация программируемых задач [алгоритмы и структуры данных, распределённые алгоритмы (Distributed Algorithms), рандомизированные алгоритмы (Randomized Algorithms) и др.]; распределённые вычисления (Distributed Computing), облачные вычисления (Cloud Computing); сложность и ресурсоёмкость вычислений.

Программирование: изучаются системы текстовых символов и кодов; языки программирования и спецификации задач; трансляторы; библиотеки программ; системное программирование; операционные системы; инструментальные системы программирования; системы управления базами данных; технологии программирования; онлайн-сервисы решения задач и др.

Человеко-машинная среда решения задач (s-среда): изучаются модели, методы и средства построения s-среды, компьютерных сетей, сетей цифровой связи, Интернета.

Восприятие и представление сообщений, взаимодействие в s-среде: изучаются модели, методы и средства восприятия и представления визуальных, аудио, тактильных и др. сообщений; компьютерное зрение, слух и др. искусственные сенсоры; формирование аудио-, визуальных, тактильных и др. сообщений (включая комбинированные), рассчитанных на человека и робота-партнёра; распознавание аудио, визуальных и др. сообщений (речи, жестов и др.); обработка изображений, компьютерная графика, визуализация и др.; обмен сообщениями (модели сообщений, методы и средства их приёма и передачи); интерфейсы пользователя, программ, аппаратных средств, программ с аппаратными средствами; онлайн-сервисы взаимодействия (мессенджеры, социальные сети и др.).

Информационные ресурсы и системы для решения задач в s-среде: изучаются модели, методы и средства построения, представления, сохранения, накопления, поиска, передачи и защиты информационных ресурсов; электронный документооборот; электронные библиотеки и другие информационные системы; Веб (см. Всемирная паутина ).

Информационная безопасность и криптография: изучаются методы предотвращения и обнаружения уязвимостей; контроля доступа; защиты информационных систем от вторжений, вредоносных программ, перехвата сообщений; несанкционированного использования информационных ресурсов, программных и аппаратных средств.

Искусственный интеллект: изучаются модели, методы и средства построения интеллектуальных роботов, используемых в качестве партнёров человека (для решения задач безопасности, ситуационного управления и др.); экспертные методы принятия решений.

Символьное моделирование: изучаются системы визуальных, аудио-, тактильных и других символов, рассматриваемых как конструктивные объекты для построения рассчитанных на человека моделей произвольных сущностей (систем понятий и систем знаний, объектов окружающей среды и объектов, изобретённых людьми); системы кодов, поставленные в соответствие системам символов, которые предназначены для построения кодовых эквивалентов символьных моделей, рассчитанных на манипулирование с помощью программ; языки описания символьных моделей; типизация символьных моделей и их кодовых эквивалентов; методы построения символьных моделей систем понятий и систем знаний (включая системы знаний о программируемых задачах) [подробнее см. в статье Символьное моделирование (s-моделирование)].

Становление информатики

Символьное моделирование изучаемых объектов издавна служит основным инструментом представления добытых знаний. Изобретение символов (жестовых, графических и др.) и построенных из них символьных моделей сообщений, представление и накопление таких моделей во внешней среде стали ключевыми средствами формирования и развития интеллектуальных способностей. Доминирующая роль символьных моделей в интеллектуальной деятельности определяется не только их компактностью и выразительностью, но и тем, что не существует ограничений на типы носителей, применяемых для их хранения. Носителями могут быть память человека, бумажный лист, матрица цифровой фотокамеры, память цифрового диктофона или ещё что-то. Затраты на построение, копирование, передачу, сохранение и накопление символьных моделей несопоставимо меньше, чем аналогичные затраты, связанные с несимвольными моделями (например, макетами судов, зданий и др.). Без инструментария символьного моделирования трудно представить развитие науки, инженерного дела и др. видов деятельности.

На ранних этапах развития моделирования разнообразие моделируемых объектов ограничивалось тем, что принято называть объектами окружающей среды, и модели этих объектов были физическими. Развитие звуковых, жестовых и других средств символьного моделирования смыслов, вызванное потребностями сообщать об опасности, размещении объектов охоты и других объектах наблюдения, способствовало совершенствованию механизмов познания, взаимопонимания и обучения. Стали формироваться языки сообщений, включающие звуковые и жестовые символы. Стремление моделировать поведение (включая собственное) поставило новые задачи. Можно предположить, что изначально это стремление было связано с обучением рациональному поведению на охоте, в быту, при стихийных бедствиях. На определённом этапе задумались о создании таких средств моделирования, которые позволяли бы строить модели, допускающие их хранение, копирование и передачу.

Стремление повысить эффективность пояснений, сопровождающих показ, приводило к совершенствованию понятийного аппарата и средств его речевого воплощения. Развитие символьных моделей в виде графических схем и совершенствование речи привели к графической модели речи. Была создана письменность. Она стала не только важным этапом в становлении символьного моделирования, но и мощным инструментом в развитии интеллектуальной деятельности. Теперь описания объектов моделирования и связей между ними могли быть представлены композициями текстов, схем и рисунков. Был создан инструментарий для отображения наблюдений, рассуждений и планов в виде символьных моделей, которые можно было хранить и передавать. Актуальными стали задачи изобретения носителей, инструментов для письма и создания изображений, красящих средств и др. Это были первые задачи на пути построения среды символьного моделирования.

Важный этап в графическом моделировании связан с моделями схематических изображений (прародителей чертежей) – основы проектирования. Представление проектируемого трёхмерного объекта в трёх двумерных проекциях, на которых показаны размеры и наименования деталей, сыграло решающую роль в развитии инженерного дела. На пути от рукописных текстов, рисунков и схем к книгопечатанию и графическим моделям в проектировании, от звукозаписи, фотографии и радио к кино и телевидению, от компьютеров и локальных сетей к глобальной сети, виртуальным лабораториям и дистанционному образованию постоянно растёт роль символьных моделей, которые человек создаёт с помощью машин.

Продуктивность решателей задач – ключевая проблема производительности интеллектуальной деятельности, постоянно находящаяся в центре внимания изобретателей. Потребность в количественных оценках материальных объектов издавна стимулировала изобретение систем звуковых, жестовых, а затем и графических символов. Какое-то время обходились правилом: каждой величине – свой символ. Счёт с использованием камешков, палочек и других предметов (предметный счёт) предшествовал изобретению символьного счёта (на основе графического представления величин). По мере увеличения числа предметов, которые надо было применять, актуализировалась задача символьного представления величин. Формирование понятия «числа» и идея экономии символов при моделировании чисел привела к изобретению систем счисления. Особого упоминания заслуживает идея позиционных систем счисления, одной из которых (двоичной) в 20 в. суждено было сыграть ключевую роль в изобретении цифровых программируемых машин и цифровом кодировании символьных моделей. Изменение значения символа с изменением его позиции в последовательности символов – весьма продуктивная идея, обеспечившая продвижение в изобретении вычислительных устройств (от абака до компьютера ) .

Средства повышения продуктивности решателей задач. В 1622 –33 английский учёный Уильям Отред предложил вариант логарифмической линейки , ставший прототипом логарифмических линеек, которыми инженеры и исследователи всего мира пользовались более 300 лет (до того, как стали доступны персональные ЭВМ). В 1642 Б. Паскаль , стремясь помочь отцу в расчётах при сборе налогов, создаёт пятиразрядное суммирующее устройство (« Паскалину » ), построенное на основе зубчатых колёс. В последующие годы им были созданы шести- и восьмиразрядные устройства, которые были предназначены для суммирования и вычитания десятичных чисел. В 1672 немецкий учёный Г. В. Лейбниц создаёт цифровой механический калькулятор для арифметических операций над двенадцатиразрядными десятичными числами. Это был первый калькулятор, выполнявший все арифметические операции. Механизм, названный «Колесо Лейбница», вплоть до 1970-х гг. воспроизводился в различных ручных калькуляторах. В 1821 начался промышленный выпуск арифмометров. В 1836–48 Ч. Бэббидж выполнил проект механической десятичной вычислительной машины (названной им аналитической машиной), которую можно рассматривать как механический прототип будущих вычислительных машин. Программа вычислений, данные и результат записывались на перфокартах. Автоматическое выполнение программы обеспечивало устройство управления. Машина не была построена. В 1934 – 38 К. Цузе создал механическую двоичную вычислительную машину (длина слова 22 двоичных разряда; память 64 слова; операции с плавающей запятой). Вначале программа и данные вводились вручную. Примерно через год (после начала проектирования) было сделано устройство ввода программы и данных с перфорированной киноленты, а механическое арифметическое устройство (АУ) было заменено на АУ, построенное на телефонных реле. В 1941 Цузе с участием австрийского инженера Г. Шрайера создаёт первую в мире работающую полностью релейную двоичную вычислительную машину с программным управлением (Z3). В 1942 Цузе создал также и первую в мире управляющую цифровую вычислительную машину (S2), которая использовалась для управления самолётами-снарядами. Из-за секретности работ, выполненных Цузе, об их результатах стало известно только после окончания 2-й мировой войны . Первый в мире язык программирования высокого уровня Планкалкюль (нем. Plankalkül – план исчисления) был создан Цузе в 1943–45, опубликован в 1948. Первые цифровые электронные вычислительные машины, начиная с американского компьютера ЭНИАК [(ENIAC – Electronic Numerical Integrator and Computer – электронный числовой интегратор и вычислитель); начало разработки – 1943, представлен публике в 1946], создавались как средства автоматизации математических вычислений.

Создание науки о вычислениях с помощью программируемых машин. В сер. 20 в. началось производство цифровых вычислительных машин, которые в США и Великобритании были названы компьютерами (computers), а в СССР – электронными вычислительными машинами (ЭВМ). С 1950-х гг. в Великобритании и с 1960-х – в США стала развиваться наука о вычислениях с помощью программируемых машин, получившая название Computer Science (компьютерная наука). В 1953 в Кембриджском университете была сформирована программа по специальности Computer Science; в США аналогичная программа введена в 1962 в Университете Пердью (Purdue University).

В Германии Computer Science получила название Informatik (информатика). В СССР область исследований и инженерного дела, посвящённая построению и применению программируемых машин, получила название «вычислительная техника». В декабре 1948 И. С. Брук и Б. И. Рамеев получили первое в СССР авторское свидетельство на изобретение автоматической цифровой машины. В 1950-е гг. было создано первое поколение отечественных ЭВМ (элементная база – электронные лампы): 1950 – МЭСМ (первая советская электронная вычислительная машина, разработанная под руководством С. А. Лебедева ); 1952 – М-1, БЭСМ (по 1953 самая быстродействующая ЭВМ в Европе); 1953 – « Стрела » (первая в СССР серийно выпускавшаяся ЭВМ); 1955 – «Урал-1 » из семейства «Урал » цифровых ЭВМ общего назначения (главный конструктор Б. И. Рамеев).

Совершенствование методов и средств автоматизации. С ростом доступности ЭВМ для пользователей из различных областей деятельности, начавшимся в 1970-х гг., наблюдается убывание доли математических задач, решаемых с помощью ЭВМ (изначально созданных как средства автоматизации математических вычислений), и рост доли нематематических задач (коммуникационных, поисковых и др.). Когда во второй половине 1960-х гг. стали производиться компьютерные терминалы с экранами, начались разработки программ экранных редакторов, предназначенных для ввода, сохранения и коррекции текста с отображением его на полном экране [одним из первых экранных редакторов стал O26, созданный в 1967 для операторов консоли компьютеров серии CDC 6000; в 1970 был разработан vi – стандартный экранный редактор для ОС Юникс (Unix) и Линукс (Linux)]. Применение экранных редакторов не только увеличило производительность труда программистов, но и создало предпосылки для существенных перемен в инструментарии автоматизированного построения символьных моделей произвольных объектов. Например, использование экранных редакторов для формирования текстов различного назначения (научных статей и книг, учебных пособий и др.) уже в 1970-е гг. позволило значительно увеличить производительность создания текстовых информационных ресурсов. В июне 1975 американский исследователь Алан Кей [создатель языка объектно-ориентированного программирования Смолток (Smalltalk) и один из авторов идеи персонального компьютера] в статье «Personal Computing» (« Персональные вычисления » ) написал: «Представьте себя обладателем автономной машины знаний в портативном корпусе, имеющем размер и форму обычного блокнота. Как бы вы стали использовать её, если бы её сенсоры превосходили ваше зрение и слух, а память позволяла хранить и извлекать при необходимости тысячи страниц справочных материалов, стихов, писем, рецептов, а также рисунки, анимации, музыкальные произведения, графики, динамические модели и что-то ещё, что вы хотели бы создать, запомнить и изменить?» . Это высказывание отражало совершившийся к тому времени поворот в подходе к построению и применению программируемых машин: от средств автоматизации в основном математических вычислений к средствам решения задач из различных областей деятельности. В 1984 компания « Kurzweil Music Systems » (KMS), созданная американским изобретателем Реймондом Курцвейлом, произвела первый в мире цифровой музыкальный синтезатор Kurzweil 250. Это был первый в мире специализированный компьютер, который жестовые символы, вводимые с клавиатуры, преобразовывал в музыкальные звуки.

Совершенствование методов и средств информационного взаимодействия. В 1962 американские исследователи Дж. Ликлайдер и У. Кларк опубликовали доклад о человеко-машинном взаимодействии в режиме онлайн . В докладе содержалось обоснование целесообразности построения глобальной сети как инфраструктурной платформы, обеспечивающей доступ к информационным ресурсам, размещённым на компьютерах, подключённых к этой сети. Теоретическое обоснование пакетной коммутации при передаче сообщений в компьютерных сетях было дано опубликованной в 1961 в статье американского учёного Л. Клейнрока. В 1971 Р. Томлинсон (США) изобрёл электронную почту , в 1972 этот сервис был реализован. Ключевым событием в истории создания Интернета стало изобретение в 1973 американскими инженерами В. Серфом и Р. Каном протокола управления передачей – TCP . В 1976 они продемонстрировали передачу сетевого пакета по протоколу TCP. В 1983 г. семейство протоколов TCP/IP было стандартизовано. В 1984 создана система доменных имён (DNS – Domain Name System) (см. Домен в информатике). В 1988 разработан протокол чата [интернет-сервиса обмена текстовыми сообщениями в реальном времени (IRC – Internet Relay Chat)]. В 1989 реализован проект Веба (см. Всемирная паутина ), разработанный Т. Бернерс-Ли . 6.6.2012 – знаменательный день в истории Интернета: крупные интернет-провайдеры, производители оборудования для компьютерных сетей и веб-компании стали использовать протокол IPv6 (наряду с протоколом IPv4), практически решив проблему дефицита IP-адресов (см. Интернет ). Высокому темпу развития Интернета способствует то, что со времени его зарождения профессионалы, занимающиеся научно-техническими задачами построения Интернета, без задержек обмениваются идеями и решениями, используя его возможности. Интернет стал инфраструктурной платформой человеко-машинной среды решения задач. Он служит коммуникационной инфраструктурой электронной почты , Веба, поисковых систем, интернет-телефонии (IP-телефонии) и других интернет-cервисов, применяемых при информатизации образования, науки, экономики, государственного управления и других видов деятельности. Созданные на основе Интернета электронные сервисы сделали возможным успешное функционирование разнообразных коммерческих и некоммерческих интернет-образований: интернет-магазинов, социальных сетей [Фейсбук (Facebook), ВКонтакте, Твиттер (Twitter) и др.], поисковых систем [Гугл (Google), Яндекс (Yandex) и др.], энциклопедических веб-ресурсов [Википедия (Wikipedia), Webopedia и др.], электронных библиотек [Всемирная цифровая библиотека (World Digital Library), Научная электронная библиотека eLibrary и др.], корпоративных и государственных информационных порталов и др.

Начиная с 2000-х гг., интенсивно растёт число интернет-решений – «умный дом» (Smart House), «умная энергосистема» (Smart Grid) и др., воплощающих концепцию «интернета вещей» (The Internet of Things). Успешно развиваются М2М-решения (M2M – Machine-to-Machine), основанные на информационных технологиях межмашинного взаимодействия и предназначенные для мониторинга датчиков температуры, счётчиков электроэнергии, воды и др.; отслеживания местоположения подвижных объектов на основе систем ГЛОНАСС и GPS (см. Спутниковая система позиционирования ); контроля доступа на охраняемые объекты и др.

Официальное оформление информатики в СССР. Официальное оформление информатики в СССР произошло в 1983, когда в составе Академии наук СССР было образовано Отделение информатики, вычислительной техники и автоматизации. В его состав вошли созданный в том же году Институт проблем информатики АН СССР, а также Институт прикладной математики АН СССР, Вычислительный центр АН СССР, Институт проблем передачи информации АН СССР и ряд других институтов. На первом этапе основными считались исследования в области технических и программных средств массовой вычислительной техники и систем на их основе. Полученные результаты должны были стать основанием для создания семейства отечественных персональных ЭВМ (ПЭВМ) и их применения для информатизации научной, образовательной и других актуальных видов деятельности.

Проблемы и перспективы

Методологическое обеспечение построения персональной s-среды. В ближайшие годы одно из актуальных направлений методологического обеспечения совершенствования s-среды будет связано с созданием персонализируемых систем решения задач, аппаратные средства которых размещаются в экипировке пользователя. Скорости передовых технологий беспроводной связи уже достаточны для решения многих задач на основе интернет-сервисов. Ожидается, что до 2025 скорости и распространённость беспроводных технологий связи достигнут таких уровней, при которых часть проводных интерфейсов наших дней будет вытеснена беспроводными. Снижение цен на интернет-сервисы также будет способствовать продвижению технологий персонализации s-среды пользователя. Актуальными проблемами, связанными с персонализацией s-среды, являются: создание более совершенных символьных и кодовых систем; программно-аппаратное преобразование аудио- и тактильных сообщений, отправляемых человеком, в графические, представленные композицией текста, гипертекста, специальных символов и изображений; технологическое совершенствование и унификация беспроводных интерфейсов [прежде всего видео-интерфейсов (вывод по выбору пользователя: на специальные очки, экраны монитора, телевизора или другого устройства видео-вывода)].

Методологическое обеспечение построения персональной s-среды должно опираться на результаты исследований в области искусственного интеллекта, направленных на построение не машинного имитатора интеллекта человека, а интеллектуального партнёра, управляемого человеком. Развитие технологий построения персональной s-среды предполагает усовершенствование методологий дистанционного обучения, взаимодействия и др.

Понравилась статья? Поделиться с друзьями: