Виды колебаний. Колебательное движение Виды колебаний и их определения

Белорусский национальный технический университет

Кафедра “Техническая физика”

Лаборатория механики и молекулярной физики

Отчёт

по лабораторной работе СП 1

Колебания и волны”.

Выполнил: студент гр.107624

Хихол И.П.

Проверил: Федотенко А.В.

Минск 2004г.

Вопросы:

    Какое движение называется колебательным? Виды колебаний? Какие колебания называются гармоническими? Основные характеристики гармонического колебания.

    Какие колебания называют свободными? Приведите примеры свободных колебаний.

    Какие колебания называются вынужденными? Приведите примеры вынужденных колебаний.

    Опишите процесс превращения энергии при гармонически колебательном движении, на примере математического или пружинного маятника.

    По какой формуле определяют полную механическую энергию при гармонического колебания тела в момент прохождения точки равновесия и крайних точек движения.

    Почему свободные колебания маятника затухают? При каких условиях колебания маятника могут стать незатухающими?

    Что называется механическим резонансом? Каково условие резонанса? Виды резонанса. Примеры резонансных систем. Приведите пример полезного и вредного проявления резонанса.

    Что представляет собой автоколебательная система? Приведите пример устройства для получения автоколебаний. В чем состоит отличие автоколебаний от вынужденных и свободных колебаний?

    Что называется волной? Основные характеристики волнового процесса. Типы волн.

    Какие волны называются поперечными, продольными? В чем состоит различия между ними? Приведи примеры поперечных и продольных волн?

    Какую волну называют линейной, сферической, плоской? Какими свойствами обладает они обладают?

    Как отражаются волны от преграды? Что представляет собой стоячая волна? Ее основные характеристики. Приведите примеры.

    Применение волновых процессов. Как устроена антенна радиотелескопа?

    Звуковые волны и их применение.

Ответы:

1 Колебаниями называется процессы, отличающиеся то или иной степенью повторяемости.

Различают колебания: механические, электромагнитные, электромеханические.

Гармонические колебания - это такие колебания, при которых колеблющаяся величина изменяются по закону sin или cos.

Основные характеристики гармонического колебания: амплитуда, длина волны, частота.

2 Свободными колебания называют: колебания, которые происходят в системе предоставленной самой себе после того как ей бал сообщен толчок либо она была выведена из положения равновесия

Пример свободных колебаний: колебания шарика, подвешенного на нити.

3 Вынужденными колебания называют: колебания, в процессе которых колеблющаяся система подвергается воздействию внешней периодически изменяющейся силы.

Пример вынужденных колебаний: колебания моста, возникающие при прохождение по нему людей, шагающих в ногу.

4 При гармонически колебательном движении энергия переходит от кинетической к потенциальной энергии и обратно. Сумма энергий равна максимальной энергии.

5 По формуле определяют полную механическую энергию при гармонического колебания тела в момент прохождения точки равновесия,
крайних точек движения.

6 Свободные колебания маятника затухают так как на тело действуют сила препятствующие его движению (силы трения, сопротивления).

Колебания маятника могут стать незатухающими, если постоянно подводить энергию.

7 Резонанс – максимальное увеличение амплитуды.

Условие резонанса: когда собственная частота системы должна совпадать с поступательной.

Примеры резонансных систем:

Пример полезного проявления резонанса: используется в акустике, радиотехнике (радиоприемник). Пример вредного проявления резонанса: разрушение мостов при прохождение по ним марширующих колон.

8 Автоколебательная система – это колебания сопровождающиеся воздействием на колебательную систему внешних сил, однако моменты времени, когда осуществляются эти воздействия, задается самой колебательной системой – система сама управляет внешними силами.

Пример устройства для получения автоколебаний: часы, в которых маятник получает толчки за счет энергии поднятой гири или закрученной пружины, причем эти толчки происходят в момент прохождения маятника через среднее положение.

Отличие автоколебаний от вынужденных и свободных колебаний состоит в том что к этой системе подводится энергия из вне, но эта подача энергии контролируется самой системой.

9 Волна – это колебания, распространяющиеся в пространстве с течением времени.

Характеристика волнового процесса: длина волны, скорость распространения волны, амплитуда волны

Волны бываю поперечными и продольными.

10 Поперечные волны – частицы среды колеблются, оставаясь в плоскостях, перпендикулярные распространения волны.

Продольные волны – частицы среды колеблются в направление распространения волны

Примером поперечных волн является звуковые волны, продольных – радиоволны.

11 Линейной волной называют волну которая распространяется параллельными линия.

Сферическая волна распространяется во все стороны от точки вызывающие ее колебания, и гребни напоминают сферы.

Волна считается плоской – если ее волновые поверхности представляет совокупность плоскостей, параллельных друг другу.

12 Волны отражается под таким же углом к нормали как и падающая волна в эту точку.

Стоячая волна образуется в однородной среде, когда по этой среде навстречу друг другу распространяются две одинаковые волны: бегущая и встречная. В результате суперпозиции (наложение этих форм) возникает стоячая волна.

Характеристики: амплитуда, частота.

Пример: два источника волн находятся в воде, они создают одинаковые волна, между этими источниками будут стоячие волны.

13 Волновые процессы применяются при передаче сигналов на расстояние.

Волны падающие не плоскость антенны параллельно отражаются и пересекаются в одной точке где происходит резонанс

14 Звуковые волны распространяются в виде продольных механических волн. Скорость распространения этих волн зависит от механических свойств среды и не зависят от частоты.

Литература:

    Сивухин Д.В. Общий курс физики, т., гл.2, §17. М., «Наука» , 1989.

    Детлаф А., А. Яворский Б. М. «Высшая школа», 1998.

    Геворкян Р.Г. Шепель

    Трофимоза Т.И. Курс физики, М. «Высшая школа»,1998.

    Сазельева И.В. Курс обшей физики, т. 1, гл. 2, §15. М., «Наука», 1977.

    Наракевич И.И., волмянский Э. И., Лобко С.И. Физика для ВТУЗов. – Минск. Высшая школа. 1992 г.

Колебаниями называются процессы, характеризуемые определённой повторяемостью со временем. Можно без преувеличения сказать, что мы живём в мире колебаний и волн. Действительно, живой организм существует благодаря периодическому биению сердца, наши лёгкие колеблются при дыхании. Человек слышит и разговаривает вследствие колебаний его барабанных перепонок и голосовых связок. Световые волны (колебания электрических и магнитных полей) позволяют нам видеть. Другими важными примерами являются переменный ток, электромагнитные колебания в колебательном контуре, радиоволны и т.д. Как видно из приведённых примеров, природа колебаний различна. Однако они сводятся к двум типам механическим и электромагнитным колебаниям. Оказалось, что, несмотря на различие физической природы колебаний, они описываются одинаковыми математическими уравнениями.

Любая система, способная колебаться или в которой могут происходить колебания , называется колебательной . Колебания, происходящие в колебательной системе, выведенной из состояния равновесия и представленной самой себе, называют свободными колебаниями . Свободные колебания являются затухающими, так как энергия, сообщённая колебательной системе, постоянно убывает. Рассмотрим сначала колебания, полностью пренебрегая причинами, приводящими к убыванию энергии.

Гармоническими называют колебания, при которых какая-либо физическая величина, описывающая процесс, изменяется со временем по закону косинуса или синуса:

(t) = Acos( 0 t +) (1)

Выясним физический смысл постоянных A , w и a, входящих в это уравнение.

Константа A называется амплитудой колебания.

Амплитуда это наибольшее значение, которое может принимать колеблющаяся величина. Согласно определению, она всегда положительна.

Выражение wt + a, стоящее под знаком косинуса, называют фазой колебания . Она позволяет рассчитать значение колеблющейся величины s в любой момент времени. Постоянная величина a представляет собой значение фазы в момент времени t = 0 и поэтому называется начальной фазой колебания . Значение начальной фазы зависит от выбора начала отсчёта времени. Величина w получила название циклической частоты, физический смысл которой связан с понятиями периода и частоты колебаний.

Периодом незатухающих колебаний называется наименьший промежуток времени, по истечении которого процессы повторяются, или коротко время одного полного колебания. Число колебаний, совершаемых в единицу времени, называют частотой колебаний . Частота n связана с периодом T колебаний соотношением

Частота колебаний измеряется в герцах (Гц). Циклическая частота связана с периодом и частотой колебаний соотношением:

Из этого соотношения следует физический смысл циклической частоты. Она показывает, сколько колебаний совершается за 2p секунд.

Пружинный маятник представляет собой тело массой, подвешенное на пружине. Массой пружины и силами трения пренебрегаем.

Рассмотрим превращения энергии, происходящие при колебании такого маятника. Уравнение колебаний пружинного маятника имеет вид:

x(t) = Xmcos(w_t + a) (4)

где X m и w0 амплитуда колебания и циклическая частота колебания (см. (1)). Это выражение получается из (1) заменой x на x ------и A на X m, учитывая, что

Здесь k коэффициент жёсткости пружины, т -- масса тела. Полная механическая энергия W пружинного маятника представляет собой сумму кинетической энергии W k тела и потенциальной энергии W p деформированной пружины, т.е.

W = Wk + Wp (5)

Потенциальная энергия деформированной пружины находится по формуле

W p = kx 2 / 2

где x величина удлинения пружины, равная отклонению тела от положения равновесия. С учётом (4) получаем:

так как Кинетическая энергия тела равна W k = (1/2)m 2. Согласно определению скорость тела при движении вдоль координатной оси x равна

Тогда скорость тела, совершающего гармонические колебания по закону (4), находим по формуле:

Подставляя (6) и (7) в (5), находим

поскольку sin2(w0t + a) + cos2(w0t + a) = 1. Таким образом, как следует из (8), полная механическая энергия при свободных гармонических колебаниях не зависит от времени, т.е. остается величиной постоянной. Из соотношений же (6) и (7) вытекает, что потенциальная и кинетическая энергии изменяются со временем пропорционально cos2(w0t + a) и sin2(w0t + a) соответственно. Поэтому, когда одна из них увеличивается, другая уменьшается. Следовательно, в процессе механических колебаний происходит периодический переход потенциальной энергии в кинетическую энергию и обратно. Важно отметить, что энергия колебаний пропорциональна квадрату амплитуды колебаний (см. (8)).

Колебательным контуром называют электрическую цепь, состоящую из индуктивности и ёмкости. Электрическим сопротивлением контура пренебрегаем.

Рассмотрим теперь электромагнитные колебания в колебательном контуре. Уравнение колебаний заряда q на конденсаторе записывается в виде:

q = qmcos(w0t + a) (9)

где q m амплитуда колебания заряда, ?0 циклическая частота колебаний (см. (1)).

Циклическая частота находится по формуле

где L индуктивность катушки, С -- ёмкость конденсатора.

Энергия W колебательного контура складывается из энергии W E электрического поля конденсатора и энергии W B магнитного поля индуктивности, т.е.

W = WE + WB (10)

W E = q 2/(2C )

где q величина заряда на конденсаторе, C ёмкость конденсатора. Учитывая (9), получаем, что:

Энергия магнитного поля находится по формуле

W B = Li 2/2

Здесь i сила тока, проходящего через проводник. Сила тока i в контуре находится дифференцированием соотношения (9) по времени:

Поскольку

Подставляя (11) и (12) в (10), находим

Из соотношений же (11) и (12) следует, что энергии электрического и магнитного полей изменяются со временем пропорционально cos2(?0t + ?) и sin2(?0t + ?) соответственно. Поэтому, когда одна из них увеличивается, другая уменьшается. Следовательно, в процессе колебаний происходит периодический переход энергии электрического поля в энергию магнитного и обратно, т.е. происходят электромагнитные колебания. Важно отметить, что энергия колебаний также пропорциональна квадрату амплитуды.

Затухающие колебания. До сих пор были рассмотрены идеализированные незатухающие колебания, которые возникали в колебательной системе, когда не происходит потери энергии. Однако такие потери всегда есть вследствие наличия сил трения и нагревания проводников в колебательном контуре. Рассмотрим теперь реальные колебательные системы, в которых наблюдается убывание энергии, сообщённой ей. Уравнение колебаний в этом случае записывается в виде:

где введено обозначение

Здесь w представляет собой циклическую частоту затухающих колебаний, а w0 собственную циклическую частоту, в отсутствии потерь энергии при колебаниях. График зависимости (14) показан на рис. 1).

незатухающий колебание маятник декремент

Из графика видно, что величина? периодически достигает максимума и минимума. В этом смысле процессы, описываемые уравнением (14), можно считать колебательными. Их называют затухающими колебаниями . Наименьший промежуток времени T , через который повторяются максимумы (или минимумы) называют периодом затухающих колебаний . Выражение

стоящее перед периодической функцией cos(t +) в формуле (14), рассматривают как амплитуду затухающих колебаний. Она экспоненциально убывает со временем (см. пунктирную кривую на рис. 1). Величина A 0 представляет собой амплитуду колебания в момент времени t = 0, т.е. это начальная амплитуда затухающих колебаний. Величина, от которой зависит убывание амплитуды, называется коэффициентом затухания . Чем больше коэффициент затухания, тем колебания быстрее прекращаются.

Рассмотрим характеристики затухающих колебаний. Из выражения (15) теоретически следует, что амплитуда затухающих колебаний становится равной нулю при t . В связи с этим трудно охарактеризовать быстроту затухания. Поэтому вводят промежуток времени t, в течение которого амплитуда затухающих колебаний уменьшается в e раз (e 2,718 основание натуральных логарифмов), т.е. A (t )/A (t + ?) = e . Подставляя (15) в это выражение, получаем:

Отсюда bt = 1 и b = 1/t , т.е. коэффициент затухания обратно пропорционален времени, за которое амплитуда затухающих колебаний уменьшается в e раз.

Наряду с коэффициентом затухания используется также понятие логарифмического декремента затухания.

Логарифмическим декрементом затухания называют натуральный логарифм от отношения амплитуд затухающих колебаний, соответствующих моментам времени, отличающимся на период колебания, т.е.

Выясним его физический смысл. Используя выражение (15), из (16), находим:

  • b = 1/t
  • t = N еT

где N e число колебаний за время t.

d = T/ = T/(NeT) = 1/Ne

т.е. логарифмический декремент затухания обратно пропорционален числу колебаний, по истечении которых амплитуда затухающих колебаний уменьшается в e раз.

Вынужденные колебания. Явление резонанса. Вынужденными называют колебания, происходящие под действием периодически изменяющегося воздействия, а сами воздействия называются вынуждающими . Вынужденные колебания происходят с частотой, равной частоте вынуждающих воздействий. В качестве примера рассмотрим вынужденные колебания пружинного маятника. В этом случае на тело, кроме силы упругости и трения, действует вынуждающая сила F , изменяющаяся со временем по закону

F = Fm cos Щt ,

где Fm и Щ -- амплитуда и циклическая частота колебания. Пусть циклическая частота вынуждающей силы меньше собственной частоты

В этом случае маятник совершает гармонические колебания с некоторой амплитудой АВ. Затем начинаем плавно увеличивать частоту вынуждающей силы. При этом амплитуда вынужденных колебаний возрастает. При Щ амплитуда становится максимальной и при дальнейшем увеличении частоты амплитуда вынужденных колебаний снова уменьшается (рис. 3). Аналогичная зависимость амплитуды вынужденных колебаний от частоты наблюдается при электромагнитных колебаниях, происходящих в колебательном контуре. Явление резкого возрастания амплитуды вынужденных колебаний, когда частота вынуждающих воздействий примерно равна собственной частоте колебательной системы , называется резонансом .

Явление резонанса широко используется в технике. Оно может быть как полезным, так и вредным. Так, например, явление электрического резонанса играет полезную роль при настройке радиоприёмника на нужную радиостанцию. Изменяя величины индуктивности и ёмкости, можно добиться того, что собственная частота колебательного контура совпадёт с частотой электромагнитных волн, излучаемых какой-либо радиостанцией. В результате этого в контуре возникнут резонансные колебания данной частоты, амплитуды же колебаний, создаваемых другими станциями, будут малы. Это приводит к настройке радиоприёмника на нужную станцию.

С возможностью резонанса приходится считаться при сооружении мостов, производственных зданий, дымовых труб, высотных зданий и т.д. С целью ограничения разрушающего действия резонанса в производственных зданиях под агрегаты (источники вибрации) устанавливаются виброизоляторы. При расчёте высоких и гибких сооружений (дымовые трубы, висячие мосты и т.п.) на ветровую нагрузку предусматривают мероприятия по устройству обтекателей, виброгасителей. Для ограничения передачи колебаний от источника вибраций сооружениям через грунт, в грунте копают глубокие траншеи и наполняют их керамзитом, хорошо поглощающим энергию колебаний.

Волны. Представление о волнах пронизывает нашу жизнь и всю современную технику: волны на море и сейсмические волны в земле, звуковые волны, электромагнитные волны (радиоволны, свет, рентгеновское излучение) и т.д.

Волна это процесс распространения колебаний (возмущения) в пространстве . Геометрическое место точек, до которых дошли колебания, называют фронтом волны . Фронт волны представляет собой поверхность, отделяющую область пространства, в которой происходят колебания, от области, где их ещё нет. Все точки фронта волны колеблются в одинаковых фазах, поскольку колебания в них

начинаются одновременно. Форма фронта волны может быть различной. Простейшими являются сферические и плоские волны, фронт которых соответственно сфера и плоскость Линии, вдоль которых происходит распространение волны , называются лучами . В однородных изотропных средах лучи перпендикулярны к фронту волны. Независимо от фронта волны различают волны продольные и поперечные. В продольной волне колебания происходят вдоль направления распространения; в поперечной перпендикулярно к направлению распространения. Волны, во всех точках которых совершаются гармонические колебания одинаковой частоты, называются монохроматическими волнами .

- 131.04 Кб

Введение………………………………………………………… …..

  1. Виды и характеристики колебаний.
    1. Механические колебания…………………………………………….
    1. Электомагнитные колебания………………………..

Литература…………………………………………………… ……………..

Введение.

Колебания – один из самых распространенных процессов в природе и технике. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни.

Звук – это колебания плотности и давления воздуха, радиоволны – периодические изменения напряженностей электрического и магнитного полей, видимый свет – тоже электромагнитные колебания, только с несколько иными длиной волны и частотой. Землетрясения – колебания почвы, приливы и отливы – изменение уровня морей и океанов, вызываемое притяжением Луны и достигающее в некоторых местностях 18 метров, биение пульса – периодические сокращения сердечной мышцы человека и т.д. Смена бодрствования и сна, труда и отдыха, зимы и лета...

Даже наше каждодневное хождение на работу и возвращение домой попадает под определение колебаний, которые трактуются как процессы, точно или приближенно повторяющиеся через равные промежутки времени.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего и поэтому описываются одними и теми же дифференциальными уравнениями. Специальный раздел физики – теория колебаний – занимается изучением закономерностей этих явлений. Знать их необходимо судо- и самолетостроителям, специалистам промышленности и транспорта, создателям радиотехнической и акустической аппаратуры.

Любые колебания характеризуются амплитудой – наибольшим отклонением некоторой величины от своего нулевого значения, периодом (T ) или частотой (v ). Последние две величины связаны между собой обратно пропорциональной зависимостью: T = 1/v . Частота колебаний выражается в герцах (Гц). Единица измерения названа так в честь известного немецкого физика Генриха Герца (1857...1894). 1 Гц – это одно колебание в секунду. Примерно с такой частотой бьется человеческое сердце. Слово «херц» по-немецки означает «сердце». При желании в этом совпадении можно усмотреть некую символическую связь.

Первыми учеными, изучавшими колебания, были Галилео Галилей (1564...1642) и Христиан Гюйгенс (1629...1692). Галилей установил изохронизм (независимость периода от амплитуды) малых колебаний, наблюдая за раскачиванием люстры в соборе и отмеряя время по ударам пульса на руке. Гюйгенс изобрел первые часы с маятником (1657) и во втором издании своей монографии «Маятниковые часы» (1673) исследовал ряд проблем, связанных с движением маятника, в частности нашел центр качания физического маятника.

Большой вклад в изучение колебаний внесли многие ученые: английские – У. Томсон (лорд Кельвин) и Дж. Рэлей , русские – А.С. Попов и П.Н. Лебедев, советские – А.Н. Крылов, Л.И. Мандельштам, Н.Д. Папалекси, Н.Н. Боголюбов, А.А. Андронов и другие.

1.Виды колебаний и их характеристики.

Колебательными процессами (колебаниями) называются движения или изменения состояния, обладающие той или иной степенью повторяемости во времени.

Колебания называются периодическими, если значения физических величин, изменяющиеся в процессе колебаний, повторяются через равные промежутки времени Т, называемые периодом.

В зависимости от физической природы и механизма возбуждения колебаний различают:

- механические колебания (колебания маятников, струн, балок, частей машин и механизмов, качка кораблей, волнение моря, колебания давления при распространении звука в газе, жидкости, твердом теле и т.д.);

- электромагнитные колебания (переменный ток, колебания тока, заряда, векторов E и H в колебательных контурах и т.д.);

- электромеханические колебания (колебания мембран телефонов, диффузоров электродинамических громкоговорителей и т.д.).

Колебательные движения отличаются от других видов движений. Они характеризуются некоторыми общими признаками. На языке теории колебаний различия между колебательным движением тела и процессами в колебательных электромагнитных контурах исчезают, если подходить к ним с точки зрения общих принципов. Такой подход называется электромеханическими аналогиями.

Система, совершающая колебания, называется колебательной системой.

Колебания, которые возникают вследствие какого-либо начального отклонения системы от ее устойчивого равновесия, называются собственными колебаниями.

Колебания, возникающие в системе под влиянием переменного внешнего воздействия, называются вынужденными колебаниями.

Общие признаки и понятия, единые для различных колебательных систем, следующие:

  • дифференциальное уравнение (его вид одинаков для любых колеблющихся систем);
  • уравнение колебаний;
  • амплитуда;
  • частота или период колебаний;
  • фаза;
  • начальная фаза.

Рассмотрим колебания в механической и электромагнитной системах, выделяя именно перечисленные выше признаки.

1.1.Механические колебания.

В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные колебания, автоколебания и параметрические колебания.

Свободными называют такие колебания, которые происходят в системе, предоставленной самой себе после того, как ей был сообщен толчок либо она была выведена из положения равновесия. Примером могут служить колебания шарика, подвешенного на нити (маятник). Для того чтобы вызвать колебания, можно либо толкнуть шарик, либо отведя в сторону, отпустить его.

Вынужденными называются такие колебания, в процессе которых колеблющаяся система подвергается воздействию внешней периодически изменяющейся силы. Примером служат колебания моста, возникающие при прохождении по нему людей, шагающих в ногу.

Автоколебания, как и вынужденные колебания, сопровождаются воздействием на колеблющуюся систему внешних сил, однако моменты времени, когда осуществляются эти воздействия, задаются самой колеблющейся системой – система сама управляет внешним воздействием. Примером автоколебательной системы являются часы, в которых маятник получает толчки за счет энергии поднятой гири или закрученной пружины, причем эти толчки происходят в моменты прохождения маятника через среднее положение. При параметрических колебаниях за счет внешнего воздействия происходит периодическое изменение какого-либо параметра системы, например длины нити, к которой подвешен шарик, совершающий колебания.

Простейшими являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина (например, отклонение маятника) изменяется со временем по закону синуса или косинуса. Этот вид колебаний особенно важен по следующим причинам: во-первых, колебания в природе и в технике часто имеют характер, очень близкий к гармоническим, и, во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение нескольких гармонических колебаний.

В качестве механической колебательной системы, на примере которой мы будем рассматривать колебания, выбираем пружинный маятник : маленькое тело (материальная точка) массой m подвешено на пружине с жесткостью k (Рисунок 2).

Ненагруженная пружина имела длину l 0 . Когда подвесили тело, пружина удлинилась на ∆l. Возникшая упругая сила уравновесила силу тяжести. Это соотношение позволяет определить положение равновесия пружинного маятника . Если теперь тело сместить относительно положения равновесия на расстояние х, то на тело будет действовать сила упругости и сила тяжести.

Равнодействующая этих сил равна:

Знак минус означает, что направление силы F упр. и направление смещения х противоположны. F упр. - сила упругости, возникающая при смещении тела относительно положения равновесия за счет сжатия или растяжения пружины (в зависимости от того, в какую сторону от положения равновесия отклонено тело). Качественно на Рисунке 1.1 виден результат действия упругой силы (чем больше смещение, тем больше F упр.).

Рисунок 1.1 – Положения пружинного маятника за время одного периода колебаний.

Если система совершает колебания под действием сил, развивающихся в самой колебательной системе без внешних воздействий и без учета сил сопротивления, то колебания называются незатухающими собственными колебаниями .

Отсутствие затухания колебаний характерно для идеальной колебательной системы, которая является физической моделью реальных физических процессов.

Дифференциальное уравнение , соответствующее колебаниям пружинного маятника, можно получить из закона его движения, которым является 2-й закон Ньютона ma = F .

Учитывая, что ускорение есть вторая производная от смещения по времени
,
а сила, действующая на тело, есть сила упругости, определяемая для малых смещений тела от положения равновесия по закону Гука, как, получим


или
.

Это дифференциальное уравнение второго порядка для незатухающих колебаний. Основной его отличительной особенностью является тот факт, что вторая производная от смещения по времени (т.е. ускорение) пропорциональна смещению. Дифференциальное уравнение, в которое величина х входит в нулевой или первой степени, называется линейным дифференциальным уравнением. В дальнейшем мы покажем, что подобного рода уравнения характерны для незатухающих колебаний в любой идеальной колебательной системе.

Перенесем все члены уравнения в левую часть и приведем дифференциальное уравнение к виду:

Величина, обозначим ее, получим

Решением дифференциального уравнения такого вида являются уравнения:

Или

Эти решения называются уравнениями колебаний, они позволяют вычислить смещение х пружинного маятника в любой момент времени.

Колебания, при которых характеризующие их физические величины изменяются по закону синуса или косинуса, называются гармоническими .

Отличие аргументов функций синуса и косинуса составляет, т.е. .
В дальнейшем чаще всего мы будем использовать решение дифференциального уравнения в виде.

В уравнении колебаний:

А – амплитуда смещения – максимальное отклонение маятника от положения равновесия;

х – смещение маятника, т.е. отклонение колеблющейся точки (тела) от положения равновесия в момент времени t;

фаза колебаний – величина, определяющая положение колеблющейся точки в любой момент времени t;

α – начальная фаза определяет положение маятника в начальный момент времени (t = 0).

Периодом T называется наименьший интервал времени, за который система возвращается в исходное положение. За период колебаний система совершает одно полное колебание.

Частотой периодических колебаний называется величина, равная числу колебаний, совершаемых за единицу времени.

Циклической или круговой частотой периодических колебаний называется величина, равная числу колебаний, совершаемых за единиц времени.

Для пружинного маятника частота и период собственных колебаний в зависимости от параметров системы имеют вид:

, .

Зная уравнение смещения пружинного маятника, получим подобные уравнения для других физических величин. Найдем скорость, ускорение, энергию колебаний, если уравнение смещения пружинного маятника задано в виде.

Скорость колебаний маятника есть первая производная по времени от смещения:

Краткое описание

Колебания – один из самых распространенных процессов в природе и технике. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни.

Механические колебания…………………………………………….

Электомагнитные колебания………………………..

Литература…………………………………………………………………..

1. Колебания. Периодические колебания. Гармонические колебания.

2. Свободные колебания. Незатухающие и затухающие колебания.

3. Вынужденные колебания. Резонанс.

4. Сопоставление колебательных процессов. Энергия незатухающих гармонических колебаний.

5. Автоколебания.

6. Колебания тела человека и их регистрация.

7. Основные понятия и формулы.

8. Задачи.

1.1. Колебания. Периодические колебания.

Гармонические колебания

Колебаниями называют процессы, отличающиеся той или иной степенью повторяемости.

Повторяющиеся процессы непрерывно происходят внутри любого живого организма, например: сокращения сердца, работа легких; мы дрожим, когда нам холодно; мы слышим и разговариваем благодаря колебаниям барабанных перепонок и голосовых связок; при ходьбе наши ноги совершают колебательные движения. Колеблются атомы, из которых мы состоим. Мир, в котором мы живем, удивительно склонен к колебаниям.

В зависимости от физической природы повторяющегося процесса различают колебания: механические, электрические и т.п. В настоящей лекции рассматриваются механические колебания.

Периодические колебания

Периодическими называют такие колебания, при которых все характеристики движения повторяются через определенный промежуток времени.

Для периодических колебаний используют следующие характеристики:

период колебаний Т, равный времени, в течение которого совершается одно полное колебание;

частота колебаний ν, равная числу колебаний, совершаемых за одну секунду (ν = 1/Т);

амплитуда колебаний А, равная максимальному смещению от положения равновесия.

Гармонические колебания

Особое место среди периодических колебаний занимают гармонические колебания. Их значимость обусловлена следующими причинами. Во-первых, колебания в природе и в технике часто имеют характер, очень близкий к гармоническому, и, во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение нескольких гармонических колебаний.

Гармонические колебания - это колебания, при которых наблюдаемая величина изменяется во времени по закону синуса или косинуса:

В математике функции этого вида называют гармоническими, поэтому колебания, описываемые такими функциями, тоже называют гармоническими.

Положение тела, совершающего колебательное движение, характеризуется смещением относительно равновесного положения. В этом случае величины, входящие в формулу (1.1), имеют следующий смысл:

х - смещение тела в момент времени t;

А - амплитуда колебаний, равная максимальному смещению;

ω - круговая частота колебаний (число колебаний, совершаемых за 2π секунд), связанная с частотой колебаний соотношением

φ = (ωt +φ 0) - фаза колебаний (в момент времени t); φ 0 - начальная фаза колебаний (при t = 0).

Рис. 1.1. Графики зависимости смещения от времени для х(0) = А и х(0) = 0

1.2. Свободные колебания. Незатухающие и затухающие колебания

Свободными или собственными называются такие колебания, которые происходят в системе, предоставленной самой себе, после того как она была выведена из положения равновесия.

Примером могут служить колебания шарика, подвешенного на нити. Для того чтобы вызвать колебания, нужно либо толкнуть шарик, либо, отведя в сторону, отпустить его. При толчке шарику сообщается кинетическая энергия, а при отклонении - потенциальная.

Свободные колебания совершаются за счет первоначального запаса энергии.

Свободные незатухающие колебания

Свободные колебания могут быть незатухающими только при отсутствии силы трения. В противном случае первоначальный запас энергии будет расходоваться на ее преодоление, и размах колебаний будет уменьшаться.

В качестве примера рассмотрим колебания тела, подвешенного на невесомой пружине, возникающие после того, как тело отклонили вниз, а затем отпустили (рис. 1.2).

Рис. 1.2. Колебания тела на пружине

Со стороны растянутой пружины на тело действует упругая сила F, пропорциональная величине смещения х:

Постоянный множитель k называется жесткостью пружины и зависит от ее размеров и материала. Знак «-» указывает, что сила упругости всегда направлена в сторону, противоположную направлению смещения, т.е. к положению равновесия.

При отсутствии трения упругая сила (1.4) - это единственная сила, действующая на тело. Согласно второму закону Ньютона (ma = F):

После переноса всех слагаемых в левую часть и деления на массу тела (m) получим дифференциальное уравнение свободных колебаний при отсутствии трения:

Величина ω 0 (1.6) оказалась равной циклической частоте. Эту частоту называют собственной.

Таким образом, свободные колебания при отсутствии трения являются гармоническими, если при отклонении от положения равновесия возникает упругая сила (1.4).

Собственная круговая частота является основной характеристикой свободных гармонических колебаний. Эта величина зависит только от свойств колебательной системы (в рассматриваемом случае - от массы тела и жесткости пружины). В дальнейшем символ ω 0 всегда будет использоваться для обозначения собственной круговой частоты (т.е. частоты, с которой происходили бы колебания при отсутствии силы трения).

Амплитуда свободных колебаний определяется свойствами колебательной системы (m, k) и энергией, сообщенной ей в начальный момент времени.

При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники (теория этих вопросов не рассматривается) (рис. 1.3).

Математический маятник - небольшое тело (материальная точка), подвешенное на невесомой нити (рис. 1.3 а). Если нить отклонить от положения равновесия на небольшой (до 5°) угол α и отпустить, то тело будет совершать колебания с периодом, определяемым по формуле

где L - длина нити, g - ускорение свободного падения.

Рис. 1.3. Математический маятник (а), физический маятник (б)

Физический маятник - твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси. На рисунке 1.3 б схематически изображен физический маятник в виде тела произвольной формы, отклоненного от положения равновесия на угол α. Период колебаний физического маятника описывается формулой

где J - момент инерции тела относительно оси, m - масса, h - расстояние между центром тяжести (точка С) и осью подвеса (точка О).

Момент инерции - это величина, зависящая от массы тела, его размеров и положения относительно оси вращения. Вычисляется момент инерции по специальным формулам.

Свободные затухающие колебания

Силы трения, действующие в реальных системах, существенно изменяют характер движения: энергия колебательной системы постоянно убывает, и колебания либо затухают, либо вообще не возникают.

Сила сопротивления направлена в сторону, противоположную движению тела, и при не очень больших скоростях пропорциональна величине скорости:

График таких колебаний представлен на рис. 1.4.

В качестве характеристики степени затухания используют безразмерную величину, называемую логарифмическим декрементом затухания λ.

Рис. 1.4. Зависимость смещения от времени при затухающих колебаниях

Логарифмический декремент затухания равен натуральному логарифму отношения амплитуды предыдущего колебания к амплитуде последующего колебания.

где i - порядковый номер колебания.

Нетрудно видеть, что логарифмический декремент затухания находится по формуле

Сильное затухание. При

выполнении условия β ≥ ω 0 система возвращается в положение равновесия, не совершая колебаний. Такое движение называется апериодическим. На рисунке 1.5 показаны два возможных способа возвращения в положение равновесия при апериодическом движении.

Рис. 1.5. Апериодическое движение

1.3. Вынужденные колебания, резонанс

Свободные колебания при наличии сил трения являются затухающими. Незатухающие колебания можно создать с помощью периодического внешнего воздействия.

Вынужденными называются такие колебания, в процессе которых колеблющаяся система подвергается воздействию внешней периодической силы (ее называют вынуждающей силой).

Пусть вынуждающая сила изменяется по гармоническому закону

График вынужденных колебаний представлен на рис. 1.6.

Рис. 1.6. График зависимости смещения от времени при вынужденных колебаниях

Видно, что амплитуда вынужденных колебаний достигает установившегося значения постепенно. Установившиеся вынужденные колебания являются гармоническими, а их частота равна частоте вынуждающей силы:

Амплитуда (А) установившихся вынужденных колебаний находится по формуле:

Резонансом называется достижение максимальной амплитуды вынужденных колебаний при определенном значении частоты вынуждающей силы.

Если условие (1.18) не выполнено, то резонанс не возникает. В этом случае при увеличении частоты вынуждающей силы амплитуда вынужденных колебаний монотонно убывает, стремясь к нулю.

Графическая зависимость амплитуды А вынужденных колебаний от круговой частоты вынуждающей силы при разных значениях коэффициента затухания (β 1 > β 2 > β 3) показана на рис. 1.7. Такая совокупность графиков называется резонансными кривыми.

В некоторых случаях сильное возрастание амплитуды колебаний при резонансе является опасным для прочности системы. Известны случаи, когда резонанс приводил к разрушению конструкций.

Рис. 1.7. Резонансные кривые

1.4. Сопоставление колебательных процессов. Энергия незатухающих гармонических колебаний

В таблице 1.1 представлены характеристики рассмотренных колебательных процессов.

Таблица 1.1. Характеристики свободных и вынужденных колебаний

Энергия незатухающих гармонических колебаний

Тело, совершающее гармонические колебания, обладает двумя видами энергии: кинетической энергией движения Е к = mv 2 /2 и потенциальной энергией Е п, связанной с действием упругой силы. Известно, что при действии упругой силы (1.4) потенциальная энергия тела определяется формулой Е п = кх 2 /2. Для незатухающих колебаний х = А cos(ωt), а скорость тела определяется по формуле v = - А ωsin(ωt). Отсюда получаются выражения для энергий тела, совершающего незатухающие колебания:

Полная энергия системы, в которой происходят незатухающие гармонические колебания, складывается из этих энергий и остается неизменной:

Здесь m - масса тела, ω и A - круговая частота и амплитуда колебаний, k - коэффициент упругости.

1.5. Автоколебания

Существуют такие системы, которые сами регулируют периодическое восполнение потерянной энергии и поэтому могут колебаться длительное время.

Автоколебания - незатухающие колебания, поддерживаемые внешним источником энергии, поступление которой регулируется самой колебательной системой.

Системы, в которых возникают такие колебания, называются автоколебательными. Амплитуда и частота автоколебаний зависят от свойств самой автоколебательной системы. Автоколебательную систему можно представить следующей схемой:

В данном случае сама колебательная система каналом обратной связи воздействует на регулятор энергии, информируя его о состоянии системы.

Обратной связью называется воздействие результатов какоголибо процесса на его протекание.

Если такое воздействие приводит к возрастанию интенсивности процесса, то обратная связь называется положительной. Если воздействие приводит к уменьшению интенсивности процесса, то обратная связь называется отрицательной.

В автоколебательной системе может присутствовать как положительная, так и отрицательная обратная связь.

Примером автоколебательной системы являются часы, в которых маятник получает толчки за счет энергии поднятой гири или закрученной пружины, причем эти толчки происходят в те моменты, когда маятник проходит через среднее положение.

Примером биологических автоколебательных систем являются такие органы, как сердце, легкие.

1.6. Колебания тела человека и их регистрация

Aнализ колебаний, создаваемых телом человека или его отдельными частями, широко используется в медицинской практике.

Колебательные движения тела человека при ходьбе

Ходьба - это сложный периодический локомоторный процесс, возникающий в результате координированной деятельности скелетных мышц туловища и конечностей. Aнализ процесса ходьбы дает много диагностических признаков.

Характерной особенностью ходьбы является периодичность опорного положения одной ногой (период одиночной опоры) или двух ног (период двойной опоры). В норме соотношение этих периодов равно 4:1. При ходьбе происходит периодическое смещение центра масс (ЦМ) по вертикальной оси (в норме на 5 см) и отклонение в сторону (в норме на 2,5 см). При этом ЦМ совершает движение по кривой, которую приближенно можно представить гармонической функцией (рис. 1.8).

Рис. 1.8. Вертикальное смещение ЦМ тела человека во время ходьбы

Сложные колебательные движения при поддержании вертикального положения тела.

У человека, стоящего вертикально, происходят сложные колебания общего центра масс (ОЦМ) и центра давления (ЦД) стоп на плоскость опоры. На анализе этих колебаний основана статокинезиметрия - метод оценки способности человека сохранять вертикальную позу. Посредством удержания проекции ОЦМ в пределах координат границы площади опоры. Данный метод реализуется с помощью стабилометрического анализатора, основной частью которого является стабилоплатформа, на которой в вертикальной позе находится испытуемый. Колебания, совершаемые ЦД испытуемого при поддержании вертикальной позы, передаются стабилоплатформе и регистрируются специальными тензодатчиками. Сигналы тензодатчиков передаются на регистрирующее устройство. При этом записывается статокинезиграмма - траектория перемещения ЦД испытуемого на горизонтальной плоскости в двумерной системе координат. По гармоническому спектру статокинезиграммы можно судить об особенностях вертикализации в норме и при отклонениях от нее. Данный метод позволяет анализировать показатели статокинетической устойчивости (СКУ) человека.

Механические колебания сердца

Существуют различные методы исследования сердца, в основе которых лежат механические периодические процессы.

Баллистокардиография (БКГ) - метод исследования механических проявлений сердечной деятельности, основанный на регистрации пульсовых микроперемещений тела, обусловленных выбрасыванием толчком крови из желудочков сердца в крупные сосуды. При этом возникает явление отдачи. Тело человека помещают на специальную подвижную платформу, находящуюся на массивном неподвижном столе. Платформа в результате отдачи приходит в сложное колебательное движение. Зависимость смещения платформы с телом от времени называется баллистокардиограммой (рис. 1.9), анализ которой позволяет судить о движении крови и состоянии сердечной деятельности.

Апекскардиография (AKГ) - метод графической регистрации низкочастотных колебаний грудной клетки в области верхушечного толчка, вызванных работой сердца. Регистрация апекскардиограммы производится, как правило, на многоканальном электрокарди-

Рис. 1.9. Запись баллистокардиограммы

ографе при помощи пьезокристаллического датчика, являющегося преобразователем механических колебаний в электрические. Перед записью на передней стенке грудной клетки пальпаторно определяют точку максимальной пульсации (верхушечный толчок), в которой и фиксируют датчик. По сигналам датчика автоматически строится апекскардиограмма. Проводят амплитудный анализ АКГ - сравнивают амплитуды кривой при разных фазах работы сердца с максимальным отклонением от нулевой линии - отрезок ЕО, принимаемый за 100%. На рисунке 1.10 представлена апекскардиограмма.

Рис. 1.10. Запись апекскардиограммы

Кинетокардиография (ККГ) - метод регистрации низкочастотных вибраций стенки грудной клетки, обусловленных сердечной деятельностью. Кинетокардиограмма отличается от апекскардиограммы: первая фиксирует запись абсолютных движений грудной стенки в пространстве, вторая регистрирует колебания межреберий относительно ребер. В данном методе определяются перемещение (ККГ х), скорость перемещения (ККГ v) а также ускорение (ККГ а) для колебаний грудной клетки. На рисунке 1.11 представлено сопоставление различных кинетокардиограмм.

Рис. 1.11. Запись кинетокардиограмм перемещения (х), скорости (v), ускорения (а)

Динамокардиография (ДКГ) - метод оценки перемещения центра тяжести грудной клетки. Динамокардиограф позволяет регистрировать силы, действующие со стороны грудной клетки человека. Для записи динамокардиограммы пациент располагается на столе лежа на спине. Под грудной клеткой находится воспринимающее устройство, которое состоит из двух жестких металлических пластин размером 30x30 см, между которыми расположены упругие элементы с укрепленными на них тензодатчиками. Периодически меняющаяся по величине и месту приложения нагрузка, действующая на воспринимающее устройство, слагается из трех компонент: 1) постоянная составляющая - масса грудной клетки; 2) переменная - механический эффект дыхательных движений; 3) переменная - механические процессы, сопровождающие сердечное сокращение.

Запись динамокардиограммы осуществляют при задержке дыхания исследуемым в двух направлениях: относительно продольной и поперечной оси воспринимающего устройства. Сравнение различных динамокардиограмм показано на рис. 1.12.

Сейсмокардиография основана на регистрации механических колебаний тела человека, вызванных работой сердца. В этом методе с помощью датчиков, установленных в области основания мечевидного отростка, регистрируется сердечный толчок, обусловленный механической активностью сердца в период сокращения. При этом происходят процессы, связанные с деятельностью тканевых механорецепторов сосудистого русла, активирующихся при снижении объема циркулирующей крови. Сейсмокардиосигнал формирует форма колебаний грудины.

Рис. 1.12. Запись нормальной продольной (а) и поперечной (б) динамокардиограмм

Вибрация

Широкое внедрение различных машин и механизмов в жизнь человека повышает производительность труда. Однако работа многих механизмов связана с возникновением вибраций, которые передаются человеку и оказывают на него вредное влияние.

Вибрация - вынужденные колебания тела, при которых либо все тело колеблется как единое целое, либо колеблются его отдельные части с различными амплитудами и частотами.

Человек постоянно испытывает различного рода вибрационные воздействия в транспорте, на производстве, в быту. Колебания, возникшие в каком-либо месте тела (например, руке рабочего, держащего отбойный молоток), распространяются по всему телу в виде упругих волн. Эти волны вызывают в тканях организма переменные деформации различных видов (сжатие, растяжение, сдвиг, изгиб). Действие вибраций на человека обусловлено многими факторами, характеризующими вибрации: частотой (спектр частот, основная частота), амплитудой, скоростью и ускорением колеблющейся точки, энергией колебательных процессов.

Продолжительное воздействие вибраций вызывает в организме стойкие нарушения нормальных физиологических функций. Может возникнуть «вибрационная болезнь». Эта болезнь приводит к ряду серьезных нарушений в организме человека.

Влияние, которое вибрации оказывают на организм, зависит от интенсивности, частоты, длительности вибраций, места их приложения и направления по отношению к телу, позе, а также от состояния человека и его индивидуальных особенностей.

Колебания с частотой 3-5 Гц вызывают реакции вестибулярного аппарата, сосудистые расстройства. При частотах 3-15 Гц наблюдаются расстройства, связанные с резонансными колебаниями отдельных органов (печень, желудок, голова) и тела в целом. Колебания с частотами 11-45 Гц вызывают ухудшение зрения, тошноту, рвоту. При частотах, превышающих 45 Гц, возникают повреждение сосудов головного мозга, нарушение циркуляции крови и т.д. На рисунке 1.13 приведены области частот вибрации, оказывающие вредное действие на человека и системы его органов.

Рис. 1.13. Области частот вредного воздействия вибрации на человека

В то же время в ряде случаев вибрации находят применение в медицине. Например, при помощи специального вибратора стоматолог готовит амальгаму. Использование высокочастотных вибрационных аппаратов позволяет высверлить в зубе отверстие сложной формы.

Вибрация используется и при массаже. При ручном массаже массируемые ткани приводятся в колебательное движение при помощи рук массажиста. При аппаратном массаже используются вибраторы, в которых для передачи телу колебательных движений служат наконечники различной формы. Вибрационные аппараты подразделяются на аппараты для общей вибрации, вызывающие сотрясение всего тела (вибрационные «стул», «кровать», «платформа» и др.), и аппараты местного вибрационного воздействия на отдельные участки тела.

Механотерапия

В лечебной физкультуре (ЛФК) используются тренажеры, на которых осуществляются колебательные движения различных частей тела человека. Они используются в механотерапии - форме ЛФК, одной из задач которой является осуществление дозированных, ритмически повторяющихся физических упражнений с целью тренировки или восстановления подвижности в суставах на аппаратах маятникового типа. Основу этих аппаратов составляет балансирующий (от фр. balancer - качать, уравновешивать) маятник, который представляет собой двуплечный рычаг, совершающий колебательные (качательные) движения около неподвижной оси.

1.7. Основные понятия и формулы

Продолжение таблицы

Продолжение таблицы

Окончание таблицы

1.8. Задачи

1. Привести примеры колебательных систем у человека.

2. У взрослого человека сердце делает 70 сокращений в минуту. Определить: а) частоту сокращений; б) число сокращений за 50 лет

Ответ: а) 1,17 Гц; б) 1,84х10 9 .

3. Какую длину должен иметь математический маятник, чтобы период его колебаний был равен 1 секунде?

4. Тонкий прямой однородный стержень длиной 1 м подвешен за конец на оси. Определить: а) чему равен период его колебаний (малых)? б) какова длина математического маятника, имеющего такой же период колебаний?

5. Тело массой 1 кг совершает колебания по закону х = 0,42 cos(7,40t), где t - измеряется в секундах, а х - в метрах. Найти: а) амплитуду; б) частоту; в) полную энергию; г) кинетическую и потенциальную энергии при х = 0,16 м.

6. Оценить скорость, с которой идет человек при длине шага l = 0,65 м. Длина ноги L = 0,8 м; центр тяжести находится на расстоянии H = 0,5 м от ступни. Для момента инерции ноги относительно тазобедренного сустава использовать формулу I = 0,2mL 2 .

7. Каким образом можно определить массу небольшого тела на борту космической станции, если в вашем распоряжении имеются часы, пружина и набор гирь?

8. Амплитуда затухающих колебаний убывает за 10 колебаний на 1/10 часть своей первоначальной величины. Период колебаний Т = 0,4 с. Определить логарифмический декремент и коэффициент затухания.

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Понравилась статья? Поделиться с друзьями: