Обо Всём. Тема: Понятие десятичной дроби можно познакомиться с функциями и производными

Изучая царицу всех наук – математику, в определенный момент все сталкиваются с дробями. Хотя это понятие (как и сами виды дробей или математические действия с ними) совсем несложное, к нему нужно относиться внимательно, ведь в реальной жизни за пределами школы оно очень пригодится. Итак, давайте освежим свои знания о дробях: что это, для чего нужно, какие виды их бывают и как совершать с ними различные арифметические действия.

Ее величество дробь: это что такое

Дробями в математике называются числа, каждое из которых состоит из одной или более частей единицы. Такие дроби еще называют обыкновенными, либо простыми. Как правило, они записываются​ в виде двух чисел, которые разделены горизонтальной или слеш-чертой, она называется «дробной». Например: ½, ¾.
Верхнее, или первое из этих чисел – это числитель (показывает, сколько взято долей от числа), а нижнее, или второе – знаменатель (демонстрирует, на столько частей разделена единица).
Дробная черта фактически выполняет функции знака деления. К примеру, 7:9=7/9
Традиционно обыкновенные дроби меньше единицы. В то время как десятичные могут быть больше ее.

Для чего нужны дроби? Да для всего, ведь в реальном мире далеко не все числа целые. К примеру, две школьницы в столовой купили в складчину одну вкусную шоколадку. Когда они уже собрались делить десерт, встретили подружку и решили угостить и и ее. Однако теперь необходимо правильно разделить шоколадку, если учесть, что она состоит из 12 квадратиков.
Поначалу девчонки хотели разделить все поровну, и тогда каждой бы досталось по четыре кусочка. Но, раздумав, они решили угостить подружку, не 1/3, а 1/4 шоколадки. А поскольку школьницы плохо изучали дроби, то они не учли, что при подобном раскладе в результате у них останется 9 кусочков, которые очень плохо делятся на двоих. Этот довольно простой пример показывает, насколько важно уметь правильно находить часть от числа. А ведь в жизни подобных случаев гораздо больше.

Виды дробей: обыкновенные и десятичные

Все математические дроби делятся на два больших разряда: обыкновенные и десятичные. Об особенностях первого из них было рассказано в предыдущем пункте, так что теперь стоит уделить внимание второму.
Десятичной называют позиционную запись дроби числа, которая фиксируется на письме через запятую, без черточки или слеша. Например: 0,75, 0,5.
Фактически десятичная дробь идентична обыкновенной, однако, в ее знаменателе всегда единица с последующими нулями – отсюда произошло и ее название.
Число, предшествующее запятой, – это целая часть, а все находящееся после - дробная. Любую простую дробь можно перевести в десятичную. Так, указанные в предыдущем примере десятичные дроби можно записать как обычные: ¾ и ½.
Стоит отметить, что и десятичные, и обыкновенные дроби могут быть как положительными, так и отрицательными. Если перед ними стоит знак "-", данная дробь отрицательная, если "+" - то положительная.

Подвиды обыкновенных дробей

Есть такие виды дробей простых.
    Правильные. У них значение числителя всегда меньше, чем у знаменателя. Например: 7/8. Это правильная дробь, поскольку числитель 7 меньше, чем знаменатель 8. Неправильные. В таких дробях либо числитель и знаменатель равны между собою (8/8), либо значение нижнего числа меньше, нежели верхнего (9/8). Смешанная. Так называется правильная дробь, записанная вместе с целым числом: 8 ½. Она понимается как сумма этого числа и дроби. Кстати, довольно просто можно сделать так, чтобы на ее месте появилась неправильная дробь. Для этого 8 нужно записать как 16/2+1/2=17/2.Составные. Как понятно из названия, они состоят из нескольких дробных черт: ½ / ¾.Сократимые/несократимые. К ним может относиться как правильная, так и неправильная дробь. Все зависит от того, можно ли разделить числитель и знаменатель на одно и то же число. К примеру, 6/9 является сократимой дробью, ведь оба ее составляющих можно поделить на 3 и получится 2/3. А вот 7/9 относится к несократимым, поскольку 7 и 9 – простые числа, которые не имеют общего делителя и не могут быть сокращены.

Подвиды десятичной дроби

В отличие от простой, десятичная дробь делится всего на 2 вида.
    Конечная - получила такое название из-за того, что после запятой у нее ограниченное (конечное) число цифр: 19,25.Бесконечная дробь – это число с нескончаемым количеством цифр после запятой. К примеру, при делении 10 на 3 результатом будет бесконечная дробь 3,333…

Сложение дробей

Проводить различные арифметические манипуляции с дробями немного сложнее, чем с обычными числами. Однако, если усвоить основные правила, решить любой пример с ними не составит особого труда.
Итак, чтобы сложить между собою дроби, прежде всего, нужно сделать так, чтобы у обоих слагаемых были одинаковые знаменатели. Для этого предстоит найти наименьшее число, которое способно поделиться без остатка на знаменатели слагаемых чисел.
Например: 2/3+3/4. Наименьшим общим кратным для них будет 12, следовательно, необходимо, чтобы в каждом знаменателе стояло это число. Для этого числитель и знаменатель первой дроби умножаем на 4, получается 8/12, аналогично поступаем со вторым слагаемым, но только множим на 3 – 9/12. Теперь можно легко решить пример: 8/12+9/12= 17/12. Получившаяся дробь – это неправильная величина, поскольку числитель больше знаменателя. Ее можно и нужно пребразовать в правильную смешанную, разделив 17:12= 1 и 5/12.
В случае, если слагаются смешанные дроби, сначала действия совершаются с целыми числами, а потом с дробными.
Если в примере присутствует десятичная дробь и обычная, необходимо, чтобы обе стали простыми, потом привести их к одному знаменателю и сложить. К примеру 3,1+1/2. Число 3,1 можно записать как смешанную дробь 3 и 1/10 или как неправильную - 31/10. Общим знаменателем для слагаемых будет 10, поэтому нужно умножить поочередно числитель и знаменатель 1/2 на 5, получается 5/10. Далее можно легко все высчитать: 31/10+5/10=35/10. Полученный результат - неправильная сократимая дробь, приводим ее в нормальный вид, сократив на 5: 7/2=3 и 1/2, или десятичной - 3,5.
Если слагать 2 десятичные дроби, важно, чтобы после запятой было одинаковое количество цифр. Если это не так, нужно просто дописать необходимое количество нулей, ведь в десятичной дроби это можно сделать безболезненно. Например, 3,5+3,005. Чтобы решить это задание, нужно к первому числу прибавить 2 ноля и далее поочередно слагать: 3,500+3,005=3,505.

Вычитание дробей

Вычитая дроби, стоит поступать так же, как и при сложении: свести к общему знаменателю, отнять один числитель от другого, при необходимости перевести результат в смешанную дробь.
Например: 16/20-5/10. Общим знаменателем будет 20. Нужно привести вторую дробь к этому знаменателю, умножив обе ее части на 2, получается 10/20. Теперь можно решать пример: 16/20-10/20= 6/20. Однако этот результат относится к сократимым дробям, поэтому стоит поделить обе части на 2 и получается результат – 3/10.

Умножение дробей

Деление и умножение дробей – значительно более простые действия, нежели сложение и вычитание. Дело в том, что, выполняя эти задания, нет необходимости искать общий знаменатель.
Чтобы умножить дроби, нужно просто поочередно перемножить между собою оба числителя, а затем и оба знаменателя. Получившийся результат сократить, если дробь – это сократимая величина.

Например: 4/9х5/8. После поочередного умножения получается такой результат 4х5/9х8=20/72. Такая дробь сократима на 4, поэтому конечный ответ в примере – 5/18.

Как делить дроби

Деление дробей - тоже несложное действие, фактически оно все равно сводится к их умножению. Чтобы разделить одну дробь на другую, нужно вторую перевернуть и умножить на первую.

Например, деление дробей 5/19 и 5/7. Чтобы решить пример, нужно поменять местами знаменатель и числитель второй дроби и умножить: 5/19х7/5=35/95. Результат можно сократить на 5 – получается 7/19.
В случае, если необходимо разделить дробь на простое число, методика немного отличается. Изначально стоит записать это число как неправильную дробь, а потом делить по той же схеме. Например, 2/13:5 нужно записать как 2/13: 5/1. Теперь нужно перевернуть 5/1 и умножить получившиеся дроби: 2/13х1/5= 2/65.
Иногда приходится совершать деление дробей смешанных. С ними нужно поступать, как и с целыми числами: превратить в неправильные дроби, перевернуть делитель и умножить все. Например, 8 ½: 3. Превращаем все в неправильные дроби: 17/2: 3/1. Далее следует переворот 3/1 и умножение: 17/2х1/3= 17/6. Теперь следует перевести неправильную дробь в правильную – 2 целых и 5/6.
Итак, разобравшись с тем, что такое дроби и как можно с ними совершать различные арифметические действия, нужно постараться не забывать об этом. Ведь люди всегда более склонны делить что-то на части, нежели прибавлять, поэтому нужно уметь делать это правильно. Тема : Понятие десятичной дроби.

Чтение и запись десятичных дробей.


  1. Цель урока : формирование навыков записи и чтения десятичных дробей, умений переводить обыкновенные дроби со знаменателями 10, 100, 1000 и т.д. в десятичную дробь.

  1. Задачи:
- обучающие научить читать и записывать десятичные дроби;

- развивающие – развивать навыки самооценки и самоанализа учебной деятельности, развивать у учащихся математическую речь;

- воспитательные – воспитывать культуру математического мышления, умение работать самостоятельно.
3. Тип урока – урок закрепления знаний
4. Методы обучения: словесный, наглядный, практический
5. Формы работы учащихся – фронтальная, индивидуальная, групповая

6. Необходимое техническое оборудование – мультимедийный проектор, компьютер, экран

7. Учебно-методическое обеспечение : учебник «Математика 5», И. И. Зубарева, А. Г. Мордкович

Структура урока:


  1. Орг. момент.

  2. Повторение предыдущих тем, устная работа.

  3. Математический диктант.

  4. Физкультпауза.

  5. Основная часть.

  6. Рефлексия.

  7. Домашнее задание.

Ход урока:


  1. Орг. момент.

  • Взаимное приветствие учителя и учащихся.

  • Проверка рабочих мест.

  • Сообщение учащимся плана урока.
- Здравствуйте, ребята!

Как хорошо, что я попала именно к вам. Мне подсказали, что вы обязательно поможете в моем расследовании.

В мой следственный комитет поступила жалоба от двух водителей, которые стали участниками дорожного происшествия.

Давайте обратимся к материалам дела.

^ ПОКАЗАНИЯ ПОТЕРПЕВШИХ.

Из двух пунктов А и В навстречу друг к другу выехали автомобиль и грузовик. Скорость автомобиля – 60 км/ ч, а скорость грузовика – 40 км/ ч. Через какое время они встретятся, если расстояние между пунктами 350 км?

- Рассмотрим решение.

1) 40 + 60 = 100 (км/ч) – общая скорость автомобилей (скорость сближения)

2) 350: 100 = 35 (ч)

Ответ: машины встретятся через 35 ч.
- Ребята, обратите внимание на все данные, и ответьте: «Не вызвал ли у вас сомнение этот результат?»
- Да, сомнение есть, в этой задаче время не может быть 35 часов.
- Итак, в результате решения была допущена ошибка. Каким должен быть ответ мы узнаем, проведя расследование и изучив все факты, документы и улики.
- Для нашего расследования я взяла лупу, весы и книги.

ПЕРВОЕ ЗАДАНИЕ. (улика первая)
Из данных чисел вычеркнуть:


  • Натуральные числа

  • Правильные дроби

  • Неправильные дроби

  • Смешанные числа

8 45/1000; 1000; 12; 3/2; 0,12; 1/6; 15/15; 30/24; 12/1000; 21,032; 1 2/3.

Какие числа остались?

На нашем математическом горизонте появились числа, записанные по-новому. Это – десятичные дроби.
- Обратимся к научным документам.

^ Десятичная дробь отличается от обыкновенной дроби тем, что знаменатель у нее - это разрядная единица.

Например:

^ Десятичные дроби выделены из обыкновенных дробей в отдельный вид.
К дробной части десятичной дроби справа можно дописывать любое количество нулей, это величину дроби не изменяет.

^ Дробная часть десятичной дроби читается по последнему значащему разряду.

Например:
0,3 - три десятых
0,75 - семьдесят пять сотых
0,000005 - пять миллионных.

Чтение целой части десятичной дроби такое же, как и натуральных чисел.

Например:
27,5 - двадцать семь...;
1,57 - одна...

После целой части десятичной дроби произносится слово «целых».

Например:
10.7 - десять целых семь десятых

0,67 - ноль целых шестьдесят семь сотых.

Десятичные знаки - это цифры дробной части. Дробная часть читается не по разрядам (в отличие от натуральных чисел), а целиком, поэтому дробная часть десятичной дроби определяется последним справа значащим разрядом.

В вычислениях чаще всего используются первые три разряда. Большая разрядность дробной части десятичных дробей используется только в специфических отраслях знаний, где вычисляются бесконечно малые величины.


  • 1-й разряд после запятой - разряд десятых

  • 2-й разряд после запятой - разряд сотых

  • 3-й разряд после запятой - разряд тысячных

  • 4-й разряд после запятой - разряд десятитысячных

  • 5-й разряд после запятой - разряд стотысячных

  • 6-й разряд после запятой - разряд миллионных

  • 7-й разряд после запятой - разряд десятимиллионных

  • 8-й разряд после запятой - разряд стомиллионных

Какие сведения получили вы о нашем объекте изучения?

Обратимся к архивным материалам.
Исследуем исторические улики. Как записывали эти дроби раньше?

В V веке китайский ученый Цзю-Чун-Чжи дробь вида 2,135436 записывал так:

2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок.

Узбекский ученый Джемшид Гиясэддин ал-Каши в книге

" Ключ к арифметике« (1424 г) показал запись дроби в одну строку числами в десятичной системе.

Для записи он применял то вертикальную черту,

то чернила черного и красного цветов.

В книге "Математический канон" французского математика Ф. Виета (1540-1603) десятичная дробь записана так 2 135436 - дробная часть подчеркивалась и записывалась выше строки целой части числа

1571 г. – Иоган Кеплер предложил современную запись десятичных дробей, т.е. отделение целой части запятой.

До него существовали другие варианты:

3,7 писали как 3(0)7 или 3\ 7 или разными чернилами целую и дробную части.
- Итак, опишите как выглядит десятичная дробь в настоящее время.
^ ПРОДОЛЖИМ СЛЕДСТВЕННЫЕ ДЕЙСТВИЯ.
Второе ЗАДАНИЕ. (улика вторая)
Укажите младший разряд числа и прочитайте его:

1,25 12, 54 3,06 1410,05

Третье ЗАДАНИЕ. (улика Третья)
Как записываются десятичные дроби?

46,5 80,35 4,65 8,035 40,065 83,05 0,465 0,0835

^ ПРОВЕДЕМ СЛЕДСТВЕННЫЙ ЭКСПЕРИМЕНТ.
МАТЕМАТИЧЕСКИЙ ДИКТАНТ.
- Для следующего задания нам потребуется лупа, т. к. нужно отыскать, поставленную в числах запятую.
4735,62 123,456 54,5454 230,032 74635,2

Обменяйтесь со своими коллегами работами и выполните проверку

ФИЗКУЛЬТМИНУТКА.

^ ОСНОВНАЯ ЧАСТЬ.

Давайте заслушаем показания свидетелей:

Мама купила 2¼ кг яблок и 3,5 кг груш. Сколько килограммов фруктов купила мама?
- Какие дроби встретились в документе? (обыкновенные и десятичные )

Как вы думаете, можно ли выполнить сложение таких дробей? (нет )

Что необходимо сделать, чтобы ответить на вопрос задачи? (вычислять либо в обыкновенных, либо в десятичных дробях ).

Для этого надо переводить одни дроби в другие. Вот здесь мне понадобятся весы.

Для чего нужны весы? (взвешивать, сравнивать, уравнивать )

На наших математических весах мы будем сравнивать количество знаков после запятой (в дробной части) и нулей в разрядной единице.
^ А). Представьте в виде обыкновенной дроби числа:

0,13 6,013 0, 05 14,007 51, 3 830,0026

(Каждая группа получает одно число. Выполнив задание, проводит защиту своего ответа, дополняя собственным примером).

Б). Представьте в виде десятичной дроби число:

1 1 / 10 , 25 / 100 , 98 3 / 10 , 2 56 / 1000 , 75 108 / 10000

Р Б О А В
Расположите обыкновенные дроби в порядке возрастания.

БРАВО
4. РЕФЛЕКСИЯ.
- Наше следствие подходит к концу. Рассмотрены все материалы дела, сопоставлены факты, изучены документы.
- Вернемся к нашему нарушению.
- Каким должно быть число в задаче, для того чтобы получился правильный ответ? «Что потеряли в этом числе?» (ЗАПЯТУЮ)
- Какой правильный ответ?
- Как записать ответ обыкновенной дробью?
- Переведите в часы и минуты?
- Спасибо, молодцы. Снимаю перед вами шляпу. Мы справились с поставленной задачей.

5. Домашнее задание.

Подготовить сообщения по темам:

«История возникновения десятичных дробей»

«Где применяются десятичные дроби»
СПАСИБО ЗА УРОК.

Из множества дробей, встречающихся в арифметике, отдельного внимания заслуживают такие, у которых в знаменателе стоит 10, 100, 1000 - в общем, любая степень десятки. У этих дробей есть специальное название и форма записи.

Десятичная дробь - это любая числовая дробь, в знаменателе которой стоит степень десятки.

Примеры десятичных дробей:

Зачем вообще потребовалось выделять такие дроби? Почему для них нужна собственная форма записи? На то есть как минимум три причины:

  1. Десятичные дроби намного удобнее сравнивать. Вспомните: для сравнения обычных дробей их требуется вычесть друг из друга и, в частности, привести дроби к общему знаменателю. В десятичных дробях ничего подобного не требуется;
  2. Сокращение вычислений. Десятичные дроби складываются и умножаются по собственным правилам, и после небольшой тренировки вы будете работать с ними намного быстрее, чем с обычными;
  3. Удобство записи. В отличие от обычных дробей, десятичные записываются в одну строчку без потери наглядности.

Большинство калькуляторов также дают ответы именно в десятичных дробях. В некоторых случаях другой формат записи может привести к проблемам. Например, что, если потребовать в магазине сдачу в размере 2/3 рубля:)

Правила записи десятичных дробей

Основное преимущество десятичных дробей - удобная и наглядная запись. А именно:

Десятичная запись - это форма записи десятичных дробей, где целая часть отделяется от дробной с помощью обычной точки или запятой. При этом сам разделитель (точка или запятая) называется десятичной точкой.

Например, 0,3 (читается: «ноль целых, 3 десятых»); 7,25 (7 целых, 25 сотых); 3,049 (3 целых, 49 тысячных). Все примеры взяты из предыдущего определения.

На письме в качестве десятичной точки обычно используется запятая. Здесь и далее на всем сайте тоже будет использоваться именно запятая.

Чтобы записать произвольную десятичную дробь в указанной форме, надо выполнить три простых шага:

  1. Выписать отдельно числитель;
  2. Сдвинуть десятичную точку влево на столько знаков, сколько нулей содержит знаменатель. Считать, что изначально десятичная точка стоит справа от всех цифр;
  3. Если десятичная точка сдвинулась, а после нее в конце записи остались нули, их надо зачеркнуть.

Бывает, что на втором шаге у числителя не хватает цифр для завершения сдвига. В этом случае недостающие позиции заполняются нулями. Да и вообще, слева от любого числа можно без ущерба для здоровья приписывать любое количество нулей. Это некрасиво, но иногда полезно.

На первый взгляд, данный алгоритм может показаться довольно сложным. На самом деле все очень и очень просто - надо лишь немного потренироваться. Взгляните на примеры:

Задача. Для каждой дроби укажите ее десятичную запись:

Числитель первой дроби: 73. Сдвигаем десятичную точку на один знак (т.к. в знаменателе стоит 10) - получаем 7,3.

Числитель второй дроби: 9. Сдвигаем десятичную точку на два знака (т.к. в знаменателе стоит 100) - получаем 0,09. Пришлось дописать один ноль после десятичной точки и еще один - перед ней, чтобы не оставлять странную запись вида «,09».

Числитель третьей дроби: 10029. Сдвигаем десятичную точку на три знака (т.к. в знаменателе стоит 1000) - получим 10,029.

Числитель последней дроби: 10500. Снова сдвигаем точку на три знака - получим 10,500. В конце числа образовались лишние нули. Зачеркиваем их - получаем 10,5.

Обратите внимание на два последних примера: числа 10,029 и 10,5. Согласно правилам, нули справа надо зачеркнуть, как это сделано в последнем примере. Однако ни в коем случае нельзя поступать так с нулями, стоящими внутри числа (которые окружены другими цифрами). Именно поэтому мы получили 10,029 и 10,5, а не 1,29 и 1,5.

Итак, с определением и формой записи десятичных дробей разобрались. Теперь выясним, как переводить обычные дроби в десятичные - и наоборот.

Переход от обычных дробей к десятичным

Рассмотрим простую числовую дробь вида a /b . Можно воспользоваться основным свойством дроби и умножить числитель и знаменатель на такое число, чтобы внизу получилась степень десятки. Но прежде, чем это делать, прочитайте следующее:

Существуют знаменатели, которые не приводятся к степени десятки. Учитесь распознавать такие дроби, потому что с ними нельзя работать по алгоритму, описанному ниже.

Вот такие дела. Ну и как понять, приводится знаменатель к степени десятки или нет?

Ответ прост: разложите знаменатель на простые множители. Если в разложении присутствуют только множители 2 и 5, это число можно привести к степени десятки. Если найдутся другие числа (3, 7, 11 - что угодно), о степени десятки можно забыть.

Задача. Проверить, можно ли представить указанные дроби в виде десятичных:

Выпишем и разложим на множители знаменатели этих дробей:

20 = 4 · 5 = 2 2 · 5 - присутствуют только числа 2 и 5. Следовательно, дробь можно представить в виде десятичной.

12 = 4 · 3 = 2 2 · 3 - есть «запретный» множитель 3. Дробь не представима в виде десятичной.

640 = 8 · 8 · 10 = 2 3 · 2 3 · 2 · 5 = 2 7 · 5. Все в порядке: кроме чисел 2 и 5 ничего нет. Дробь представима в виде десятичной.

48 = 6 · 8 = 2 · 3 · 2 3 = 2 4 · 3. Снова «всплыл» множитель 3. Представить в виде десятичной дроби нельзя.

Итак, со знаменателем разобрались - теперь рассмотрим весь алгоритм перехода к десятичным дробям:

  1. Разложить знаменатель исходной дроби на множители и убедиться, что она вообще представима в виде десятичной. Т.е. проверить, чтобы в разложении присутствовали только множители 2 и 5. Иначе алгоритм не работает;
  2. Сосчитать, сколько двоек и пятерок присутствует в разложении (других чисел там уже не будет, помните?). Подобрать такой дополнительный множитель, чтобы количество двоек и пятерок сравнялось.
  3. Собственно, умножить числитель и знаменатель исходной дроби на этот множитель - получим искомое представление, т.е. в знаменателе будет стоять степень десятки.

Разумеется, дополнительный множитель тоже будет разлагаться только на двойки и пятерки. При этом, чтобы не усложнять себе жизнь, следует выбирать наименьший такой множитель из всех возможных.

И еще: если в исходной дроби присутствует целая часть, обязательно переведите эту дробь в неправильную - и только затем применяйте описанный алгоритм.

Задача. Перевести данные числовые дроби в десятичные:

Разложим на множители знаменатель первой дроби: 4 = 2 · 2 = 2 2 . Следовательно, дробь представима в виде десятичной. В разложении присутствуют две двойки и ни одной пятерки, поэтому дополнительный множитель равен 5 2 = 25. С ним количество двоек и пятерок сравняется. Имеем:

Теперь разберемся со второй дробью. Для этого заметим, что 24 = 3 · 8 = 3 · 2 3 - в разложении присутствует тройка, поэтому дробь не представима в виде десятичной.

Две последних дроби имеют знаменатели 5 (простое число) и 20 = 4 · 5 = 2 2 · 5 соответственно - везде присутствуют только двойки и пятерки. При этом в первом случае «для полного счастья» не хватает множителя 2, а во втором - 5. Получаем:

Переход от десятичных дробей к обычным

Обратное преобразование - от десятичной формы записи к обычной - выполняется намного проще. Здесь нет ограничений и специальных проверок, поэтому перевести десятичную дробь в классическую «двухэтажную» можно всегда.

Алгоритм перевода следующий:

  1. Зачеркните все нули, стоящие в десятичной дроби слева, а также десятичную точку. Это будет числитель искомой дроби. Главное - не переусердствуйте и не зачеркните внутренние нули, окруженные другими цифрами;
  2. Подсчитайте, сколько знаков стоит в исходной десятичной дроби после запятой. Возьмите цифру 1 и припишите справа столько нулей, сколько знаков вы насчитали. Это будет знаменатель;
  3. Собственно, запишите дробь, числитель и знаменатель которой мы только что нашли. По возможности, сократите. Если в исходной дроби присутствовала целая часть, сейчас мы получим неправильную дробь, что очень удобно для дальнейших вычислений.

Задача. Перевести десятичные дроби в обычные: 0,008; 3,107; 2,25; 7,2008.

Зачеркнем нули слева и запятые - получим следующие числа (это будут числители): 8; 3107; 225; 72008.

В первой и во второй дробях после запятой стоит по 3 знака, во второй - 2, а в третьей - целых 4 знака. Получим знаменатели: 1000; 1000; 100; 10000.

Наконец, объединим числители и знаменатели в обычные дроби:

Как видно из примеров, полученную дробь очень часто можно сократить. Еще раз отмечу, что любая десятичная дробь представима в виде обычной. Обратное преобразование можно выполнить не всегда.

Обыкновенная дробь

Четверти

  1. Упорядоченность . a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : « < », « > » или « = ». Это правило называется правилом упорядочения и формулируется следующим образом: два неотрицательных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа a и b связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг a неотрицательно, а b - отрицательно, то a > b . style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/57/94586b8b651318d46a00db5413cf6c15.png" border="0">

    Суммирование дробей

  2. Операция сложения . Для любых рациональных чисел a и b существует так называемое правило суммирования c . При этом само число c называется суммой чисел a и b и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел a и b существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число c . При этом само число c называется произведением чисел a и b и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c . 6435">Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  6. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  8. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  9. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  10. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  11. Наличие обратных чисел . Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.
  12. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  13. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число. max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/51/358b88fcdff63378040f8d9ab9ba5048.png" border="0">
  14. Аксиома Архимеда . Каково бы ни было рациональное число a , можно взять столько единиц, что их сумма превзойдёт a . style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/55/70c78823302483b6901ad39f68949086.png" border="0">

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/48/0caf9ffdbc8d6264bc14397db34e8d72.png" border="0">

Счётность множества

Нумерация рациональных чисел

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел.

Самый простой из таких алгоритмов выглядит следующим образом. Составляется бесконечная таблица обыкновенных дробей, на каждой i -ой строке в каждом j -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где i - номер строки таблицы, в которой располагается ячейка, а j - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби 1 / 1 ставится в соответствие число 1, дроби 2 / 1 - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

Гипотенуза такого треугольника не выражается никаким рациональным числом

Рациональными числами вида 1 / n при больших n можно измерять сколь угодно малые величины . Этот факт создаёт обманчивое впечатление, что рациональными числами можно измерить вообще любые геометрические расстояния . Легко показать, что это не верно.

Из теоремы Пифагора известно, что гипотенуза прямоугольного треугольника выражается как квадратный корень суммы квадратов его катетов . Т. о. длина гипотенузы равнобедренного прямоугольного треугольника с единичным катетом равна , т. е. числу, квадрат которого равен 2.

Если допустить, что число представляется некоторым рациональным числом, то найдётся такое целое число m и такое натуральное число n , что , причём дробь несократима, т. е. числа m и n - взаимно простые.

Если , то , т. е. m 2 = 2n 2 . Следовательно, число m 2 чётно, но произведение двух нечётных чисел нечётно, что означает, что само число m также чётно. А значит найдётся натуральное число k , такое что число m можно представить в виде m = 2k . Квадрат числа m в этом смысле m 2 = 4k 2 , но с другой стороны m 2 = 2n 2 , значит 4k 2 = 2n 2 , или n 2 = 2k 2 . Как уже показано ранее для числа m , это значит, что число n - чётно, как и m . Но тогда они не являются взаимно простыми, так как оба делятся пополам. Полученное противоречие доказывает, что не есть рациональное число.

Понравилась статья? Поделиться с друзьями: