Ген днк функции. Структура молекулы днк

ДНК является универсальным источником и хранителем наследственной информации, которая записана с помощью специальной последовательности нуклеотидов, она определяет свойства всех живых организмов.

Средняя молекулярная масса нуклеотида принимается равной 345, а количество нуклеотидных остатков может достигать нескольких сот, тысяч и даже миллионов. ДНК в основной своей массе находится в ядрах клеток. Немного содержится в хлоропластах и митохондриях. Однако ДНК ядра клетки - это не одна молекула. Она состоит из множества молекул, которые распределены по разным хромосомам, их количество меняется в зависимости от организма. Это и есть особенности строения ДНК.

История открытия ДНК

Строение и функции ДНК были открыты Джеймсом Уотсоном и Френсисом Криком, им даже была вручена Нобелевская премия в 1962 году.

Но впервые обнаружил нуклеиновые кислоты швейцарский ученый Фридрих Иоганн Мишер, работавший в Германии. В 1869 году он изучал животные клетки - лейкоциты. Для их получения использовал повязки с гноем, достававшиеся ему из больниц. Из гноя Мишер вымывал лейкоциты, а из них выделял белок. В ходе этих исследований ученому удалось установить, что в лейкоцитах кроме белков имеется еще что-то, какое-то неизвестное на тот момент вещество. Оно представляло собой нитевидный или хлопьевидный осадок, который выделялся, если создать кислую среду. Осадок сразу растворялся при добавлении щелочи.

Ученый с помощью микроскопа обнаружил, что при отмывании лейкоцитов с помощью соляной кислоты от клеток остаются ядра. Тогда он сделал заключение, что в ядре есть неизвестное вещество, названное им нуклеином (слово nucleus в переводе означает ядро).

Проведя химический анализ, Мишер выяснил, что новое вещество в своем составе имеет углерод, водород, кислород и фосфор. В то время фосфорорганических соединений было известно немного, поэтому Фридрих решил, что обнаружил новый класс соединений, находящихся в ядре клетки.

Таким образом, в XIX веке было открыто существование нуклеиновых кислот. Однако в то время никто не мог даже подумать о том, какая важная роль им принадлежит.

Вещество наследственности

Строение ДНК продолжали исследовать, и в 1944 году группа бактериологов под руководством Освальда Эвери получила доказательства того, что эта молекула заслуживает серьезного внимания. Ученый на протяжении многих лет занимался изучением пневмококков, организмов, которые вызывали пневмонию или заболевание легких. Эвери проводил опыты, смешивая пневмококки, вызывающие заболевание, с теми, которые безопасны для живых организмов. Сначала болезнетворные клетки убивали, а после добавляли к ним те, которые заболеваний не вызывают.

Результаты исследований поразили всех. Были такие живые клетки, которые после взаимодействия с мертвыми научались вызывать болезнь. Ученый выяснил природу вещества, которое участвует в процессе передачи информации живым клеткам от мертвых. Молекула ДНК и оказалась этим веществом.

Строение

Итак, необходимо разобраться с тем, какое строение имеет молекула ДНК. Открытие ее структуры стало значимым событием, это привело к образованию молекулярной биологии - новой отрасли биохимии. ДНК в больших количествах находится в ядрах клеток, однако размеры и количество молекул зависят от вида организма. Установлено, что ядра клеток млекопитающих содержат много этих клеток, они распределены по хромосомам, их насчитывается 46.

Изучая строение ДНК, в 1924 году Фельген впервые установил ее локализацию. Доказательства, полученные в ходе экспериментов, показали, что ДНК находится в митохондриях (1-2%). В других местах эти молекулы могут находиться при вирусной инфекции, в базальных тельцах, а также в яйцеклетках некоторых животных. Известно, что чем сложнее организм, тем масса ДНК больше. Количество молекул, находящихся в клетке, зависит от функции и составляет обычно 1-10%. Меньше всего их находится в миоцитах (0,2%), больше - в половых клетках (60%).

Строение ДНК показало, что в хромосомах высших организмов они связаны с простыми белками - альбуминами, гистонами и прочими, которые все вместе образуют ДНП (дезоксирибонуклеопротеид). Обычно большая молекула нестойкая, и для того чтобы она оставалась целой и неизменной в ходе эволюции, создана так называемая репарирующая система, которая состоит из ферментов - лигаз и нуклеаз, отвечающих за «ремонт» молекулы.

Химическое строение ДНК

ДНК является полимером, полинуклеотидом, состоящим из огромного числа (до десятков тысяч миллионов) мононуклеотидов. Строение ДНК имеет следующий вид: мононуклеотиды содержат азотистые основания - цитозин (Ц) и тимин (Т) - из производных пиримидинов, аденин (А) и гуанин (Г) - из производных пурина. Кроме азотистых оснований, в составе молекулы человека и животных имеется 5-метилцитозин — минорное пиримидиновое основание. С фосфорной кислотой и дезоксирибозой связываются азотистые основания. Схема строения ДНК продемонстрирована ниже.

Правила Чаргаффа

Строение и биологическая роль ДНК изучались Э. Чаргаффом в 1949 году. В ходе исследований он выявил закономерности, которые наблюдаются в количественном распределении азотистых оснований:

  1. ∑Т + Ц = ∑А + Г (то есть число пиримидиновых оснований равно числу пуриновых).
  2. Всегда количество остатков аденина равно количеству остатков тимина, а количество гуанина равно цитозину.
  3. Коэффициент специфичности имеет формулу: Г+Ц/А+Т. Например, у человека он равен 1,5, у быка - 1,3.
  4. Сумма "А + Ц" равна сумме "Г + Т", то есть аденина и цитозина имеется столько же, сколько гуанина и тимина.

Модель строения ДНК

Ее создали Уотсон и Крик. Остатки фосфатов и дезоксирибоз располагаются по хребту двух закрученных спиралеобразным образом полинуклеотидных цепей. Определено, что плоскостные структуры пиримидиновых и пуриновых оснований располагаются перпендикулярно оси цепи и образуют как бы ступени лестницы в виде спирали. Установлено также, что А всегда соединяется с Т при помощи двух водородных связей, а Г прикреплено к Ц уже тремя такими же связями. Этому явлению дали название "принцип избирательности и комплементарности".

Уровни структурной организации

Изогнутая как спираль полинуклеотидная цепь - это первичная структура, которая имеет определенный качественный и количественный набор мононуклеотидов, связанных 3’,5’-фосфодиэфирной связью. Таким образом, каждая из цепей имеет 3’-конец (дезоксирибоза) и 5’-конец (фосфатный). Участки, которые содержат в себе генетическую информацию, названы структурными генами.

Двухспиральная молекула - это вторичная структура. Причем ее полинуклеотидные цепи антипараллельны и связываются водородными связями между комплементарными основаниями цепей. Установлено, что в каждом витке этой спирали содержится 10 нуклеотидных остатков, длина ее равняется 3,4 нм. Эту структуру поддерживают также Ван-дер-Ваальсовы силы взаимодействия, которые наблюдаются между основаниями одной цепи, включающие отталкивающие и притягивающие компоненты. Эти силы объясняются взаимодействием электронов в соседних атомах. Электростатическое взаимодействие также стабилизирует вторичную структуру. Оно возникает между заряженными положительно молекулами гистонов и заряженной отрицательно нитью ДНК.

Третичная структура - это намотка цепей ДНК на гистоны или суперспирализация. Описано пять видов гистонов: Н1, Н2А, Н2В, Н3, Н4.

Укладка нуклеосом в хроматин - это четвертичная структура, поэтому молекула ДНК, имеющая длину несколько сантиметров, может складываться до 5 нм.

Функции ДНК

Основными функциями ДНК являются:

  1. Хранение наследственной информации. Последовательность аминокислот, находящихся в молекуле белка, определяется порядком, в котором расположены нуклеотидные остатки в молекуле ДНК. Также в ней зашифрована вся информация о свойствах и признаках организма.
  2. ДНК способна передавать наследственную информацию следующему поколению. Это возможно из-за способности к репликации - самоудвоению. ДНК способна распадаться на две комплементарные цепочки, и на каждой из них (в соответствии с принципом комплементарности) восстанавливается исходная последовательность нуклеотидов.
  3. При помощи ДНК происходит биосинтез белков, ферментов и гормонов.

Заключение

Строение ДНК позволяет ей являться хранителем генетической информации, а также передавать ее следующим поколениям. Какие есть особенности у этой молекулы?

  1. Стабильность. Это возможно благодаря гликозидным, водородным и фосфодиэфирным связям, а также механизму репарации индуцированных и спонтанных повреждений.
  2. Возможность репликации. Этот механизм позволяет в соматических клетках сохранять диплоидное число хромосом.
  3. Существование генетического кода. При помощи процессов трансляции и транскрипции последовательность оснований, находящихся в ДНК, преобразуется в последовательность аминокислот, находящихся в полипептидной цепи.
  4. Способность к генетической рекомбинации. При этом образуются новые сочетания генов, которые сцеплены между собой.

Таким образом, строение и функции ДНК позволяют ей играть неоценимую роль в организмах живых существ. Известно, что длина 46-ти молекул ДНК, находящихся в каждой клетке человека, равна почти 2 м, а число нуклеотидных пар составляет 3,2 млрд.

Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года

Дезоксирибонуклеиновая кислота. Общие сведения

ДНК (дезоксирибонуклеиновая кислота) - своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение. ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни как человека, так и любого др. организхма. Искусственное или естественное воздействие внешней среды способны лишь в незначительной степени повлиять на общую выраженность отдельных генетических признаков или сказаться на развитии запрограммированных процессов.

Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С ) и фосфатной (Ф ) группы (фосфодиэфирные связи).


Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т ), гуанин — только с цитозином (Г-Ц ). Именно эти пары и составляют «перекладины» винтовой "лестницы" ДНК (см.: рис. 2, 3 и 4).


Рис. 2. Азотистые основания

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.


Рис. 3. Репликация ДНК

Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.

Образование новой ДНК (репликация)

  1. Процесс репликации: раскручивание двойной спирали ДНК — синтез комплементарных цепей ДНК-полимеразой — образование двух молекул ДНК из одной.
  2. Двойная спираль «расстегивается» на две ветви, когда ферменты разрушают связь между базовыми парами химических соединений.
  3. Каждая ветвь является элементом новой ДНК. Новые базовые пары соединяются в той же последовательности, что и в родительской ветви.

По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.

Более подробная информация:

СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ


Рис. 4 . Азотистые основания: аденин, гуанин, цитозин, тимин

Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты - это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.

НУКЛЕОТИДЫ состоят из азотистого основания , соединенного с пятиуглеродным углеводом (пентозой) - дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H 2 PO 3 -).

Азотистые основания бывают двух типов: пиримидиновые основания - урацил (только в РНК), цитозин и тимин, пуриновые основания - аденин и гуанин.


Рис. 5. Структура нуклеотидов (слева), расположение нуклеотида в ДНК (снизу) и типы азотистых оснований (справа): пиримидиновые и пуриновые


Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:


Рис. 6. Выделение 3’ и 5’-концов цепи ДНК

Две цепи ДНК образуют двойную спираль . Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей . Аденин всегда соединяется с тимином, а цитозин - с гуанином. Это называется правилом комплементарности .

Правило комплементарности:

A-T G-C

Например, если нам дана цепь ДНК, имеющая последовательность

3’- ATGTCCTAGCTGCTCG - 5’,

то вторая ей цепь будет комплементарна и направлена в противоположном направлении - от 5’-конца к 3’-концу:

5’- TACAGGATCGACGAGC- 3’.


Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей

РЕПЛИКАЦИЯ ДНК

Репликация ДНК - это процесс удвоения молекулы ДНК путем матричного синтеза. В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (ДНК-праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющей в норме функции репарации (исправления химических повреждений и разрывов в молекле ДНК).

Репликация происходит по полуконсервативному механизму. Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.

Рис. 8. Репликация (удвоение) молекулы ДНК

ДНК-синтез - это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:

1) ДНК-топоизомераза, располагаясь перед вилкой репликации, разрезает ДНК для того, чтобы облегчить ее расплетание и раскручивание.
2) ДНК-хеликаза вслед за топоизомеразой влияет на процесс «расплетения» спирали ДНК.
3) ДНК-связывающие белки осуществляют связывание нитей ДНК, а также проводят их стабилизацию, не допуская их прилипания друг к другу.
4) ДНК-полимераза δ (дельта), согласовано со скоростью движения репликативной вилки, осуществляет синтез ведущей цепи дочерней ДНК в направлении 5"→3" на матрице материнскойнити ДНК по направлению от ее 3"-конца к 5"-концу (скорость до 100 пар нуклеотидов в секунду). Этим события на данной материнской нити ДНК ограничиваются.



Рис. 9. Схематическое изображение процесса репликации ДНК: (1) Отстающая цепь (запаздывающая нить), (2) Ведущая цепь (лидирующая нить), (3) ДНК-полимераза α (Polα ), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза δ (Polδ ), (9) Хеликаза, (10) Однонитевые ДНК-связывающие белки, (11) Топоизомераза.

Далее описан синтез отстающей цепи дочерней ДНК (см. Схему репликативной вилки и функции ферментов репликации)

Нагляднее о репликации ДНК см.

5) Непосредственно сразу после расплетания и стабилизации другой нити материнской молекулы к ней присоединяется ДНК-полимераза α (альфа) и в направлении 5"→3" синтезирует праймер (РНК-затравку) - последовательность РНК на матрице ДНК длиной от 10 до 200 нуклеотидов. После этого фермент удаляется с нити ДНК.

Вместо ДНК-полимеразы α к 3"-концу праймера присоединяется ДНК-полимераза ε .

6) ДНК-полимераза ε (эпсилон) как бы продолжает удлинять праймер, но в качестве субстрата встраивает дезоксирибонуклеотиды (в количестве 150-200 нуклеотидов). В результате образуется цельная нить из двух частей - РНК (т.е. праймер) и ДНК . ДНК-полимераза ε работает до тех пор, пока не встретит праймер предыдущего фрагмента Оказаки (синтезированный чуть ранее). После этого данный фермент удаляется с цепи.

7) ДНК-полимераза β (бета) встает вместо ДНК-полимеразы ε , движется в том же направлении (5"→3") и удаляет рибонуклеотиды праймера, одновременно встраивая дезоксирибонуклеотиды на их место. Фермент работает до полного удаления праймера, т.е. пока на его пути не встанет дезоксирибонуклеотид (еще более ранее синтезированный ДНК-полимеразой ε ). Связать результат свой работы и впереди стоящую ДНК фермент не в состоянии, поэтому он сходит с цепи.

В результате на матрице материнской нити "лежит" фрагмент дочерней ДНК. Он называется фрагмент Оказаки .

8) ДНК-лигаза производит сшивку двух соседних фрагментов Оказаки , т.е. 5"-конца отрезка, синтезированного ДНК-полимеразой ε , и 3"-конца цепи, встроенного ДНК-полимеразой β .

СТРОЕНИЕ РНК

Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК, РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом . Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Однако в отличие от ДНК, РНК обычно имеет не две цепи, а одну. Пентоза в РНК представлена рибозой, а не дезоксирибозой (у рибозы присутствует дополнительная гидроксильная группа на втором атоме углевода). Наконец, ДНК отличается от РНК по составу азотистых оснований: вместо тимина (Т ) в РНК представлен урацил (U ) , который также комплементарен аденину.

Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией , то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами - РНК-полимеразами .

Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Рис. 10. Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.

ТРАНСКРИПЦИЯ

Это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК - эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ - 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.

Рис. 11. Схематическое изображение транскрипции

Например, если нам дана последовательность кодирующей цепи

3’- ATGTCCTAGCTGCTCG - 5’,

то, по правилу комплементарности, матричная цепь будет нести последовательность

5’- TACAGGATCGACGAGC- 3’,

а синтезируемая с нее РНК - последовательность

ТРАНСЛЯЦИЯ

Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:

Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок

ГЕНЕТИЧЕСКИЙ КОД

Генетический код - способ кодирования аминокислотной последовательности белков с помощью последовательности нуклеотидов. Каждая аминокислота кодируется последовательностью из трех нуклеотидов - кодоном или триплетом.

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5" к 3" концу мРНК.

Таблица 1. Стандартный генетический код

1-е
основа

ние

2-е основание

3-е
основа

ние

U

C

A

G

U

U U U

(Phe/F)

U C U

(Ser/S)

U A U

(Tyr/Y)

U G U

(Cys/C)

U

U U C

U C C

U A C

U G C

C

U U A

(Leu/L)

U C A

U A A

Стоп-кодон**

U G A

Стоп-кодон**

A

U U G

U C G

U A G

Стоп-кодон**

U G G

(Trp/W)

G

C

C U U

C C U

(Pro/P)

C A U

(His/H)

C G U

(Arg/R)

U

C U C

C C C

C A C

C G C

C

C U A

C C A

C A A

(Gln/Q)

C GA

A

C U G

C C G

C A G

C G G

G

A

A U U

(Ile/I)

A C U

(Thr/T)

A A U

(Asn/N)

A G U

(Ser/S)

U

A U C

A C C

A A C

A G C

C

A U A

A C A

A A A

(Lys/K)

A G A

A

A U G

(Met/M)

A C G

A A G

A G G

G

G

G U U

(Val/V)

G C U

(Ala/A)

G A U

(Asp/D)

G G U

(Gly/G)

U

G U C

G C C

G A C

G G C

C

G U A

G C A

G A A

(Glu/E)

G G A

A

G U G

G C G

G A G

G G G

G

Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:

  • *Триплет AUG , также кодирующий метионин, называется старт-кодоном . С этого кодона начинается синтез молекулы белка. Таким образом, во время синтеза белка, первой аминокислотой в последовательности всегда будет метионин.
  • **Триплеты UAA , UAG и UGA называются стоп-кодонами и не кодируют ни одной аминокислоты. На этих последовательностях синтез белка прекращается.

Свойства генетического кода

1. Триплетность . Каждая аминокислота кодируется последовательностью из трех нуклеотидов - триплетом или кодоном.

2. Непрерывность . Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

3. Неперекрываемость . Один нуклеотид не может входить одновременно в два триплета.

4. Однозначность . Один кодон может кодировать только одну аминокислоту.

5. Вырожденность . Одна аминокислота может кодироваться несколькими разными кодонами.

6. Универсальность . Генетический код одинаков для всех живых организмов.

Пример. Нам дана последовательность кодирующей цепи:

3’- CCGATTGCACGTCGATCGTATA - 5’.

Матричная цепь будет иметь последовательность:

5’- GGCTAACGTGCAGCTAGCATAT - 3’.

Теперь «синтезируем» с этой цепи информационную РНК:

3’- CCGAUUGCACGUCGAUCGUAUA - 5’.

Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:

5’- AUAUGCUAGCUGCACGUUAGCC - 3’.

Теперь найдем старт-кодон AUG:

5’- AUAUG CUAGCUGCACGUUAGCC - 3’.

Разделим последовательность на триплеты:

звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК - на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.


Рис. 13. Центральная догма молекулярной биологии

ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ

(общие понятия)

Геном - совокупность всех генов организма; его полный хромосомный набор.

Термин "геном" был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими ("избыточными") последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.

Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК

За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.

В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации ), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент» . Позднее эта концепция была расширена до определения «один ген — один полипептид» , поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.

На рис. 14 показана схема того, как триплеты нуклеотидов в ДНК определяют полипептид - аминокислотную последовательность белка при посредничестве мРНК. Одна из цепей ДНК играет роль матрицы для синтеза мРНК, нуклеотидные триплеты (кодоны) которой комплементарны триплетам ДНК. У некоторых бактерий и многих эукариот кодирующие последовательности прерываются некодирующими участками(так называемыми интронами ).

Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.

Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.

Мы можем приблизительно рассчитать минимальный размер гена , кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350 аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов ). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.

Сколько генов в одной хромосоме?


Рис. 15. Вид хромосом в прокаритической (слева) и эукариотической клеках. Гистоны (Histones) — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация.

Как известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру - нуклеоид. Хромосома прокариота Escherichia coli , чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.

Прокариоты (Бактерии).

Бактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).

Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.

См. также: Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции, 2013. Т. 17. № 4/2. С. 972-984.

Эукариоты.

Таблица 2. ДНК, гены и хромосомы некоторых организмов

Общая ДНК,

п.н.

Число хромосом*

Примерное число генов

Escherichia coli (бактерия)

4 639 675

4 435

Saccharomyces cerevisiae (дрожжи)

12 080 000

16**

5 860

Caenorhabditis elegans (нематода)

90 269 800

12***

23 000

Arabidopsis thaliana (растение)

119 186 200

33 000

Drosophila melanogaster (плодовая мушка)

120 367 260

20 000

Oryza sativa (рис)

480 000 000

57 000

Mus musculus (мышь)

2 634 266 500

27 000

Homo sapiens (человек)

3 070 128 600

29 000

Примечание. Информация постоянно обновляется; для получения более свежей информации обратитесь к сайтам, посвященным отдельным геномным проектам

* Для всех эукариот, кроме дрожжей, приводится диплоидный набор хромосом. Диплоидный набор хромосом (от греч. diploos- двойной и eidos- вид) - двойной набор хромосом (2n), каждая из которых имеет себе гомологичную.
**Гаплоидный набор. Дикие штаммы дрожжей обычно имеют восемь (октаплоидный) или больше наборов таких хромосом.
***Для самок с двумя Х хромосомами. У самцов есть Х хромосома, но нет Y, т. е. всего 11 хромосом.

В клетке дрожжей, одних из самых маленьких эукариот, в 2,6 раза больше ДНК, чем в клетке E. coli (табл. 2). Клетки плодовой мушки Drosophila , классического объекта генетических исследований, содержат в 35 раз больше ДНК, а клетки человека — примерно в 700 раз больше ДНК, чем клетки E. coli. Многие растения и амфибии содержат еще больше ДНК. Генетический материал клеток эукариот организован в виде хромосом. Диплоидный набор хромосом (2n ) зависит от вида организма (табл. 2).

Например, в соматической клетке человека 46 хромосом (рис. 17 ). Каждая хромосома эукариотической клетки, как показано на рис. 17, а , содержит одну очень крупную двухспиральную молекулу ДНК. Двадцать четыре хромосомы человека (22 парные хромосомы и две половые хромосомы X и Y) различаются по длине более чем в 25 раз. Каждая хромосома эукариот содержит определенный набор генов.


Рис. 17. Хромосомы эукариот. а — пара связанных и конденсированных сестринских хроматид из хромосомы человека. В такой форме эукариотические хромосомы пребывают после репликации и в метафазе в процессе митоза. б — полный набор хромосом из лейкоцита одного из авторов книги. В каждой нормальной соматической клетке человека содержится 46 хромосом.

Если соединить между собой молекулы ДНК человеческого генома (22 хромосомы и хромосомы X и Y или Х и Х), получится последовательность длиной около одного метра. Прим.: У всех млекопитающих и других организмов с гетерогаметным мужским полом, у самок две X-хромосомы (XX), а у самцов — одна X-хромосома и одна Y-хромосома (XY).

Большинство клеток человека , поэтому общая длина ДНК таких клеток около 2м. У взрослого человека примерно 10 14 клеток, таким образом, общая длина всех молекул ДНК составляет 2・10 11 км. Для сравнения, окружность Земли — 4・10 4 км, а расстояние от Земли до Солнца — 1,5・10 8 км. Вот как удивительно компактно упакована ДНК в наших клетках!

В клетках эукариот есть и другие органеллы, содержащие ДНК, — это митохондрии и хлоропласты. Выдвигалось множество гипотез относительно происхождения ДНК митохондрий и хлоропластов. Общепризнанная сегодня точка зрения заключается в том, что они представляют собой рудименты хромосом древних бактерий, которые проникли в цитоплазму хозяйских клеток и стали предшественниками этих органелл. Митохондриальная ДНК кодирует митохондриальные тРНК и рРНК, а также несколько митохондриальных белков. Более 95% митохондриальных белков кодируется ядерной ДНК.

СТРОЕНИЕ ГЕНОВ

Рассмотрим строение гена у прокариот и эукариот, их сходства и различия. Несмотря на то, что ген — это участок ДНК, кодирующий всего один белок или РНК, кроме непосредственно кодирующей части, он также включает в себя регуляторные и иные структурные элементы, имеющие разное строение у прокариот и эукариот.

Кодирующая последовательность - основная структурно-функциональная единица гена, именно в ней находятся триплеты нуклеотидов, кодирующие аминокислотную последовательность. Она начинается со старт-кодона и заканчивается стоп-кодоном.

До и после кодирующей последовательности находятся нетранслируемые 5’- и 3’-последовательности . Они выполняют регуляторные и вспомогательные функции, например, обеспечивают посадку рибосомы на и-РНК.

Нетранслируемые и кодирующая последовательности составлют единицу транскрипции - транскрибируемый участок ДНК, то есть участок ДНК, с которого происходит синтез и-РНК.

Терминатор - нетранскрибируемый участок ДНК в конце гена, на котором останавливается синтез РНК.

В начале гена находится регуляторная область , включающая в себя промотор и оператор .

Промотор - последовательность, с которой связывается полимераза в процессе инициации транскрипции. Оператор - это область, с которой могут связываться специальные белки - репрессоры , которые могут уменьшать активность синтеза РНК с этого гена - иначе говоря, уменьшать его экспрессию .

Строение генов у прокариот

Общий план строения генов у прокариот и эукариот не отличается - и те, и другие содержат регуляторную область с промотором и оператором, единицу транскрипции с кодирующей и нетранслируемыми последовательностями и терминатор. Однако организация генов у прокариот и эукариот отличается.

Рис. 18. Схема строения гена у прокариот (бактерий) - изображение увеличивается

В начале и в конце оперона есть единые регуляторные области для нескольких структурных генов. С транскрибируемого участка оперона считывается одна молекула и-РНК, которая содержит несколько кодирующих последовательностей, в каждой из которых есть свой старт- и стоп-кодон. С каждого из таких участков с интезируется один белок. Таким образом, с одной молекулы и-РНК синтезируется несколько молекул белка.

Для прокариот характерно объединение нескольких генов в единую функциональную единицу - оперон . Работу оперона могут регулировать другие гены, которые могут быть заметно удалены от самого оперона - регуляторы . Белок, транслируемый с этого гена называется репрессор . Он связывается с оператором оперона, регулируя экспрессию сразу всех генов, в нем содержащихся.

Для прокариот также характерно явление сопряжения транскрипции и трансляции .


Рис. 19 Явление сопряжения транскрипции и трансляции у прокариот - изображение увеличивается

Такое сопряжение не встречается у эукариот из-за наличия у них ядерной оболочки, отделяющей цитоплазму, где происходит трансляция, от генетического материала, на котором происходит транскрипция. У прокариот во время синтеза РНК на матрице ДНК с синтезируемой молекулой РНК может сразу связываться рибосома. Таким образом, трансляция начинается еще до завершения транскрипции. Более того, с одной молекулой РНК может одновременно связываться несколько рибосом, синтезируя сразу несколько молекул одного белка.

Строение генов у эукариот

Гены и хромосомы эукариот очень сложно организованы

У бактерий многих видов всего одна хромосома, и почти во всех случаях в каждой хромосоме присутствует по одной копии каждого гена. Лишь немногие гены, например гены рРНК, содержатся в нескольких копиях. Гены и регуляторные последовательности составляют практически весь геном прокариот. Более того, почти каждый ген строго соответствует аминокислотной последовательности (или последовательности РНК), которую он кодирует (рис. 14).

Структурная и функциональная организация генов эукариот гораздо сложнее. Исследование хромосом эукариот, а позднее секвенирование полных последовательностей геномов эукариот принесло много сюрпризов. Многие, если не большинство, генов эукариот обладают интересной особенностью: их нуклеотидные последовательности содержат один или несколько участков ДНК, в которых не кодируется аминокислотная последовательность полипептидного продукта. Такие нетранслируемые вставки нарушают прямое соответствие между нуклеотидной последовательностью гена и аминокислотной последовательностью кодируемого полипептида. Эти нетранслируемые сегменты в составе генов называют интронами , или встроенными последовательностями , а кодирующие сегменты — экзонами . У прокариот лишь немногие гены содержат интроны.

Итак, у эукариот практически не встречается объединение генов в опероны, и кодирующая последовательность гена эукариот чаще всего разделена на транслируемые участки - экзоны , и нетранслируемые участки - интроны.

В большинстве случаев функция интронов не установлена. В целом, лишь около 1,5% ДНК человека являются ≪кодирующими≫, т. е. несут информацию о белках или РНК. Однако с учетом крупных интронов получается, что ДНК человека на 30% состоит из генов. Поскольку гены составляют относительно небольшую долю в геноме человека, значительная часть ДНК остается неучтенной.

Рис. 16. Схема строение гена у эукариот - изображение увеличивается

С каждого гена сначала синтезируется незрелая, или пре-РНК, которая содержит в себе как интроны, так и экзоны.

После этого проходит процесс сплайсинга, в результате которого интронные участки вырезаются, и образуется зрелая иРНК, с которой может быть синтезирован белок.


Рис. 20. Процесс альтернативного сплайсинга - изображение увеличивается

Такая организация генов позволяет, например, осуществить , когда с одного гена могут быть синтезированы разные формы белка, за счет того, что в процессе сплайсинга экзоны могут сшиваться в разных последовательностях.

Рис. 21. Отличия в строении генов прокариот и эукариот - изображение увеличивается

МУТАЦИИ И МУТАГЕНЕЗ

Мутацией называется стойкое изменение генотипа, то есть изменение нуклеотидной последовательности.

Процесс, который приводит к возникновению мутаций называется мутагенезом , а организм, все клетки которого несут одну и ту же мутацию — мутантом .

Мутационная теория была впервые сформулирована Гуго де Фризом в 1903 году. Современный ее вариант включает в себя следующие положения:

1. Мутации возникают внезапно, скачкообразно.

2. Мутации передаются из поколения в поколение.

3. Мутации могут быть полезными, вредными или нейтральными, доминантными или рецессивными.

4. Вероятность обнаружения мутаций зависит от числа исследованных особей.

5. Сходные мутации могут возникать повторно.

6. Мутации не направленны.

Мутации могут возникать под действием различных факторов. Различают мутации, возникшие под действием мутагенных воздействий : физических (например, ультрафиолета или радиации), химических (например, колхицина или активных форм кислорода) и биологических (например, вирусов). Также мутации могут быть вызваны ошибками репликации .

В зависимости от условий появления мутации подразделяют на спонтанные — то есть мутации, возникшие в нормальных условиях, и индуцированые — то есть мутации, которые возникли при особых условиях.

Мутации могут возникать не только в ядерной ДНК, но и, например, в ДНК митохондрий или пластид. Соответственно, мы можем выделять ядерные и цитоплазматические мутации.

В результате возникновения мутаций часто могут появляться новые аллели. Если мутантный аллель подавляет действие нормального, мутация называется доминантной . Если нормальный аллель подавляет мутантный, такая мутация называется рецессивной . Большинство мутаций, приводящих к возникновению новых аллелей являются рецессивными.

По эффекту выделяют мутации адаптивные , приводящие к повышению приспособленности организма к среде, нейтральные , не влияющие на выживаемость, вредные , понижающие приспособленность организмов к условиям среды и летальные , приводящие к смерти организма на ранних стадиях развития.

По последствиям выделяются мутации, приводящие к потери функции белка , мутации, приводящие к возникновению у белка новой функции , а также мутации, которые изменяют дозу гена , и, соответственно, дозу белка синтезируемого с него.

Мутация может возникнуть к любой клетке организма. Если мутация возникает в половой клетке, она называется герминативной (герминальной, или генеративной). Такие мутации не проявляются у того организма, у которого они появились, но приводят к появлению мутантов в потомстве и передаются по наследству, поэтому они важны для генетики и эволюции. Если мутация возникает в любой другой клетке, она называется соматической . Такая мутация может в той или иной степени проявляться у того организма, у которого она возникла, например, приводить к образованию раковых опухолей. Однако такая мутация не передается по наследству и не влияет на потомков.

Мутации могут затрагивать разные по размеру участки генома. Выделяют генные , хромосомные и геномные мутации.

Генные мутации

Мутации, которые возникают в масштабе меньшем, чем один ген, называются генными , или точечными (точковыми) . Такие мутации приводят к изменению одного и нескольких нуклеотидов в последовательности. Среди генных мутаций выделяют замены , приводящие к замене одного нуклеотида на другой, делеции , приводящие к выпадению одного из нуклеотидов, инсерции , приводящие к добавлению лишнего нуклеотида в последовательность.


Рис. 23. Генные (точечные) мутации

По механизму воздействия на белок, генные мутации делят на: синонимичные , которые (в результате вырожденности генетического кода) не приводят к изменению аминокислотного состава белкового продукта, миссенс-мутации , которые приводят к замене одной аминокислоты на другую и могут влиять на структуру синтезируемого белка, хотя часто они оказываются незначительными, нонсенс-мутации , приводящие к замене кодирующего кодона на стоп-кодон, мутации, приводящие к нарушению сплайсинга:


Рис. 24. Схемы мутаций

Также по механизму воздействия на белок выделяют мутации, приводящие к сдвигу рамки считывания , например, инсерции и делеции. Такие мутации, как и нонсенс-мутации, хоть и возникают в одной точке гена, часто воздействуют на всю структуру белка, что может привести к полному изменению его структуры.

Рис. 29. Хромосома до и после дупликации

Геномные мутации

Наконец, геномные мутации затрагивают весь геном целиком, то есть меняется количество хромосом. Выделяют полиплоидии — увеличение плоидности клетки, и анеуплоидии, то есть изменение количества хромосом, например, трисомии (наличие у одной из хромосом дополнительного гомолога) и моносомии (отсутствие у хромосомы гомолога).

Видео по теме ДНК

РЕПЛИКАЦИЯ ДНК, КОДИРОВАНИЕ РНК, СИНТЕЗ БЕЛКА

Все мы знаем, что облик человека, некоторые привычки и, даже, заболевания передаются по наследству. Вся эта информация о живом существе закодирована в генах. Так как же эти пресловутые гены выглядят, как они функционируют и где находятся?

Итак, носителем всех генов любого человека или животного является ДНК. Данное соединение было открыто в 1869 году Иоганном Фридрихом Мишером.Химически ДНК – это дезоксирибонуклеиновая кислота. Что же это означает? Каким образом эта кислота несет в себе генетический код всего живого на нашей планете?

Начнем с того, что рассмотрим, где располагается ДНК. В клетке человека имеется множество органоидов, которые выполняют различные функции. ДНК располагается в ядре. Ядро – это маленькая органелла, которая окружена специальной мембраной, и в которой хранится весь генетический материал – ДНК.

Каково строение молекулы ДНК?

Прежде всего, рассмотрим, что представляет собой ДНК. ДНК – это очень длинная молекула, состоящая из структурных элементов – нуклеотидов. Имеется 4 вида нуклеотидов – это аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Цепочка нуклеотидов схематически выглядит следующим образом: ГГААТЦТААГ.… Вот такая последовательность нуклеотидов и есть цепочка ДНК.

Впервые структура ДНК была расшифрована в 1953 году Джеймсом Уотсоном и Френсисом Криком.

В одной молекуле ДНК имеется две цепочки нуклеотидов, которые спирально закручены вокруг друг друга. Как же эти нуклеотидные цепочки держатся рядом и закручиваются в спираль? Данный феномен обусловлен свойством комплементарности. Комплементарность означает, что друг напротив друга в двух цепочках могут находиться только определенные нуклеотиды (комплементарные). Так, напротив аденина всегда стоит тимин, а напротив гуанина всегда только цитозин. Таким образом, гуанин комплементарен с цитозином, а аденин – с тимином.Такие пары нуклеотидов, стоящие напротив друг друга в разных цепочках также называются комплементарными.

Схематически можно изобразить следующим образом:

Г - Ц
Т - А
Т - А
Ц - Г

Эти комплементарные пары А - Т и Г - Ц образуют химическую связь между нуклеотидами пары, причем связьмежду Г и Ц более прочная чем между А и Т. Связь образуется строго между комплементарными основаниями, то есть образование связи между не комплементарными Г и А – невозможно.

«Упаковка» ДНК, как цепочка ДНК становится хромосомой?

Почему же эти нуклеотидные цепочки ДНК еще и закручиваются вокруг друг друга? Зачем это нужно? Дело в том, что количество нуклеотидов огромно и нужно очень много места, чтобы разместить такие длинные цепочки. По этой причине происходит спиральное закручивание двух нитей ДНК вокруг друга. Данное явление носит название спирализации. В результате спирализации цепочки ДНК укорачиваются в 5-6 раз.

Некоторые молекулы ДНК активно используются организмом, а другие используются редко. Такие редко используемые молекулы ДНК помимо спирализации подвергается еще более компактной «упаковке». Такая компактная упаковка называется суперспирализацией и укорачивает нить ДНК в 25-30 раз!

Как происходит упаковка спиралей ДНК?

Для суперспирализации используются гистоновые белки , которые имеют вид и структуру стержня или катушки для ниток. На эти «катушки» - гистоновые белки наматываются спирализованные нити ДНК. Таким образом, длинная нить становится очень компактно упакованной и занимает очень мало места.

При необходимости использовать ту или иную молекулу ДНК происходит процесс «раскручивания», то есть нить ДНК «сматывается» с «катушки» - гистонового белка (если была на нее накручена) и раскручивается из спирали в две параллельные цепи. А когда молекула ДНК находится в таком раскрученном состоянии, то с нее можно считать необходимую генетическую информацию. Причем считывание генетической информации происходит только с раскрученных нитей ДНК!

Совокупность суперспирализованных хромосом называется гетерохроматин , а хромосом, доступных для считывания информации – эухроматин .


Что такое гены, какова их связь с ДНК?

Теперь давайте рассмотрим, что же такое гены. Известно, что есть гены, определяющие группу крови, цвет глаз, волос, кожи и множество других свойств нашего организма. Ген – это строго определенный участок ДНК, состоящий из определенного количества нуклеотидов, расположенных в строго определенной комбинации. Расположение в строго определенном участке ДНК означает, что конкретному гену отведено его место, и поменять это место невозможно. Уместно провести такое сравнение: человек живет на определенной улице, в определенном доме и квартире, и самовольно человек не может переселиться в другой дом, квартиру или на другую улицу. Определенное количество нуклеотидов в гене означает, что каждый ген имеет конкретное число нуклеотидов и их не может стать больше или меньше. Например, ген, кодирующий выработку инсулина , состоит из 60 пар нуклеотидов; ген, кодирующий выработку гормона окситоцина – из 370 пар нуклеотидов.

Строгая последовательность нуклеотидов является уникальной для каждого гена и строго определенной. Например, последовательность ААТТААТА – это фрагмент гена, кодирующего выработку инсулина. Для того чтобы получить инсулин, используется именно такая последовательность, для получения, например, адреналина, используется другая комбинация нуклеотидов. Важно понимать, что только определенная комбинация нуклеотидов кодирует определенный «продукт» (адреналин, инсулин и т.д.). Такая вот уникальная комбинация определенного числа нуклеотидов, стоящая на «своем месте» - это и есть ген .

Помимо генов в цепи ДНК расположены, так называемые «некодирующие последовательности». Такие некодирующие последовательности нуклеотидов регулируют работу генов, помогают спирализации хромосом, отмечают точку начала и конца гена. Однако, на сегодняшний день, роль большинства некодирующих последовательностей остается невыясненной.

Что такое хромосома? Половые хромосомы

Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.

В чем заключаются различия хромосом?

Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).

Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.

Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс - икс) – это женщина, а если ХУ (икс - игрек) – перед нами мужчина.

Наследственные болезни и повреждения хромосом

Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.

Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.

Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом , но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.

На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации - какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.

Как прочитать информацию, закодированную в ДНК?

А как же можно прочитать информацию, содержащуюся в ДНК? Как использует ее собственный организм? Сама ДНК представляет собой некую матрицу, но не простую, а закодированную. Чтобы прочесть информацию с матрицы ДНК, она сначала переносится на специальный переносчик – РНК. РНК – это химически рибонуклеиновая кислота. Отличается от ДНК тем, что может проходить через мембрану ядра в клетку, а ДНК лишена такой способности (она может находиться только в ядре). Закодированная информация же используется в самой клетке. Итак, РНК – это переносчик кодированной информации из ядра в клетку.

Как происходит синтез РНК, как при помощи РНК синтезируется белок?

Нити ДНК, с которых нужно «считать» информацию, раскручиваются, к ним подходит специальный фермент – «строитель» и синтезирует параллельно нити ДНК комплементарную цепочку РНК. Молекула РНК также состоит из 4 видов нуклеотидов – аденина (А), урацила (У), гуанина (Г) и цитозина (Ц). При этом комплементарными являются следующие пары: аденин – урацил, гуанин – цитозин. Как видно, в отличие от ДНК, в РНК используется урацил вместо тимина. То есть фермент-«строитель» работает следующим образом: если в нити ДНК он видит А, то к нити РНК присоединяет У, если Г – то присоединяет Ц и т.д. Таким образом, с каждого активного гена при транскрипции формируется шаблон – копия РНК, способная проходить через мембрану ядра.

Как происходит синтез белка закодированного определенным геном?

Покинув ядро, РНК попадает в цитоплазму. Уже в цитоплазме РНК может быть, как матрица встроена в специальные ферментные системы (рибосомы), которые могут синтезировать, руководствуясь информацией РНК соответствующую последовательность аминокислот белка. Как известно, молекула белка состоит из аминокислот. Как же рибосоме удается узнать, какую именно аминокислоту надо присоединить к растущей белковой цепи? Делается это на основе триплетного кода. Триплетный код означает, что последовательность в три нуклеотида цепочки РНК (триплет, например, ГГУ) кодируют одну аминокислоту (в данном случае глицин). Каждую аминокислоту кодирует определенный триплет. И так, рибосома «прочитывает» триплет, определяет какую аминокислоту надо присоединить следующей по мере считывания информации в РНК. Когда цепочка аминокислот сформирована, она принимает определенную пространственную форму и становится белком, способным осуществлять возложенные на него ферментные, строительные, гормональные и другие функции.

Белок для любого живого организма является продуктом гена. Именно белками определяются все разнообразные свойства, качества и внешние проявления генов.

Дезоксирибонуклеиновые кислоты (ДНК), высокополимерные природные соединения, содержащиеся в ядрах клеток живых организмов; вместе с белками гистонами образуют вещество хромосом. ДНК - носитель генетической информации, ее отдельные участки соответствуют определенным генам. Молекула ДНК состоит из 2-х полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4-х типов - нуклеотидов, специфичность которых определяется одним из 4-х азотистых оснований (аденин, гуанин, цитозин, тимин). Сочетания трех рядом стоящих нуклеотидов в цепи ДНК (триплеты, или кодоны) составляют код генетический. Нарушения последовательности нуклеотидов в цепи ДНК приводят к наследственным изменениям в организме - мутациям. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Дезоксирибонуклеиновые кислоты (ДНК), нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксирибозу. ДНК является основной составляющей хромосом всех живых организмов; ею представлены гены всех про- и эукариот, а также геномы многих вирусов. В нуклеотидной последовательности ДНК записана (кодирована) генетическая информация о всех признаках вида и особенностях особи (индивидуума) - ее генотип. ДНК регулирует биосинтез компонентов клеток и тканей, определяет деятельность организма в течение всей его жизни.

История открытия и изучения ДНК

Уже в середине 19 века было установлено, что способность к наследованию тех или иных признаков организмов связана с материалом, содержащимся в клеточном ядре. В 1868-72 гг. швейцарский биохимик И. Ф. Мишер выделил из клеток гноя (лейкоцитов) и спермы лосося вещество, которое им было названо нуклеином, а впоследствии получило название дезоксирибонуклеиновая кислота.

В конце 19 - начале 20 вв. благодаря работам Л. Кесселя, П. Левена, Э. Фишера и др. было установлено, что молекулы ДНК представляют собой линейные полимерные цепи, состоящие из многих тысяч соединенных друг с другом мономеров - дезоксирибонуклеотидов четырех типов. Эти нуклеотиды образованы остатками пятиуглеродного сахара дезоксирибозы, фосфорной кислоты и одним из четырех азотистых оснований: пуринов - аденина и гуанина и пиримидинов - цитозина и тимина. Для обозначения оснований стали использовать начальные буквы их названий на английском или русском (в русскоязычной научной литературе) языке: соответственно A, G (Г), С (Ц) и Т.

Долгое время считалось, что ДНК содержится только в клетках животных, пока в 1930-х гг. российским биохимиком А. Н. Белозерским не было показано, что ДНК является обязательным компонентом всех живых клеток. Первые доказательства генетической роли ДНК (как вещества наследственности) были получены в 1944 группой американских ученых (О. Эйвери и др.), которые в опытах на бактериях однозначно установили, что с ее помощью наследуемый признак может быть перенесен от одной клетки к другой.

К середине 20 в. работами английских ученых (А. Тодд и др.) было окончательно выяснено строение нуклеотидов, которые служат мономерными звеньями в молекуле ДНК, и тип межнуклеотидной связи. Все нуклеотиды соединены между собой 3"-, 5"-фосфодиэфирной связью таким образом, что остаток фосфорной кислоты служит связующим звеном между 3"-углеродным атомом дезоксирибозы одного нуклеотида и 5"-углеродным атомом дезоксирибозы другого нуклеотида. На основании этого в каждой цепи ДНК выделяют 3"-конец и 5"-конец молекулы.

Структура ДНК. Открытие «двойной спирали»

В 1950 американский биохимик Э. Чаргафф обнаружил существенные различия в нуклеотидном составе ДНК из разных источников. Кроме того, оказалось, что состав нуклеотидов в молекуле ДНК подчиняется ряду закономерностей, главные из которых - равенство суммарного количества пуриновых и пиримидиновых оснований и равенство количества аденина и тинина (А-Т) и гуанина и цитозина (Г-Ц). В 1953 американский биохимик Дж.Уотсон и английский физик Ф. Крик на основании рентгеноструктурного анализа кристаллов ДНК (лаборатория М. Уилкинса) и, основываясь на данных Чаргаффа, предложили трехмерную модель ее структуры. Согласно этой модели молекулы ДНК представляют собой две правозакрученные вокруг общей оси полинуклеотидных цепи, или двойную спираль. На один виток спирали приходится примерно 10 нуклеотидных остатков. Цепи в этой двойной спирали антипараллельны, то есть направлены в противоположные стороны, так что 3"-конец одной цепи располагается напротив 5"-конца другой.

Остовы цепей образованы остатками дезоксирибозы и отрицательно заряженными фосфатными группами. Они находятся на внешней стороне двойной спирали (обращены к поверхности молекулы). Плохо растворимые в воде (гидрофобные) пуриновые и пиримидиновые основания обеих цепей ориентированы внутрь и расположены перпендикулярно оси двойной спирали.

Антипараллельные полинуклеотидные цепи двойной спирали ДНК не идентичны ни по последовательности оснований, ни по нуклеотидному составу. Однако они комплементарны друг другу: где бы ни появился в одной цепи аденин, напротив него в другой цепи обязательно будет стоять тимин, а против гуанина в одной цепи обязательно стоит цитозин другой цепи. Это означает, что последовательность оснований в одной цепи однозначно определяет последовательность оснований в другой (комплементарной) цепи молекулы. Более того, эти пары оснований образуют между собой водородные связи (три связи имеется в паре Г-Ц и две - между А-Т). Водородные связи и гидрофобные взаимодействия играют главную роль в стабилизации двойной спирали ДНК.

Нагревание, значительные изменения рH и ряд других факторов вызывают денатурацию молекулы ДНК, приводящую к разделению ее цепей. В определенных условиях возможно полное восстановление исходной (нативной) структуры молекулы ДНК, ее ренатурация. Способность комплементарных цепей ДНК легко разъединяться, а затем вновь восстанавливать исходную структуру лежит в основе самовоспроизведения молекулы ДНК, ее репликации (удвоения): если две комплементарные цепи ДНК разделить, а затем на каждой, как на матрице, построить новые, строго комплементарные им цепи, то две вновь образовавшиеся молекулы будут идентичны исходной. Открытие этого принципа позволило на молекулярном уровне объяснить явление наследственности.

Сходство и различие строения природных ДНК. Размеры

Почти все природные ДНК состоят из двух цепей (исключение составляют одноцепочечные ДНК некоторых вирусов). При этом ДНК может иметь линейную форму или кольцевую (когда концы молекулы ковалентно замкнуты). В клетках прокариот ДНК организована в одну хромосому (нуклеоид) и представлена одной кольцевой макромолекулой с молекулярной массой более 10. Кроме того, в клетках некоторых бактерий имеется одна или несколько плазмид - небольших кольцевых молекул ДНК, не связанных с хромосомой. У эукариот основная масса ДНК находится в ядре клетки в составе хромосом (ядерная ДНК). В каждой хромосоме эукариот имеется только одна линейная молекула ДНК, но так как во всех клетках эукариот (кроме половых) присутствует двойной набор гомологичных хромосом, то и ДНК представлена двумя неидентичными копиями, полученными организмом от отца и матери при слиянии половых клеток. Молекулярная масса эукариотических ДНК выше, чем у ДНК прокариот (например, в одной из хромосом плодовой мушки дрозофилы она достигает 7,9 х 1010). Кроме того, в состав митохондрий и хлоропластов входят кольцевые молекулы ДНК с молекулярной массой 106-107. ДНК этих органелл называют цитоплазматической; она составляет примерно 0,1% всей клеточной ДНК.

Размеры молекул ДНК обычно выражаются числом образующих их нуклеотидов. Эти размеры варьирует от нескольких тысяч пар нуклеотидов у бактериальных плазмид и некоторых вирусов до многих сотен тысяч пар нуклеотидов у высших организмов. Такие гигантские молекулы должны быть чрезвычайно компактно упакованы в клетках и вирусах. Например, длина ДНК нуклеотида кишечной палочки, состоящей примерно из четырех миллионов пар нуклеотидов, равна 1,4 мм, что в 700 раз превышает размеры самой бактериальной клетки. Общая длина всей ДНК в одной единственной клетке человека составляет примерно 2 м. Если же учесть, что организм взрослого человека состоит примерно из 1013 клеток, то общая длина всей ДНК человека должна составлять около 2х1013 м, или 2х1010 км (для сравнения: окружность земного шара - 4х104 км, а расстояние от Земли до Солнца - 1,44х108 км). Каким же образом происходит упаковка гигантских молекул ДНК в малом объеме клетки или вируса? Двойная спираль ДНК не является абсолютно жесткой, что делает возможным образование перегибов, петель, сверхспиральных структур и т. д. В нуклеоиде бактерий такая укладка поддерживается небольшим количеством специальных белков и, возможно, рибонуклеиновыми кислотами. В эукариотических клетках с помощью универсального набора основных белков гистонов и некоторых негистоновых белков ДНК превращается в очень компактное образование - хроматин, который является основным компонентом хромосом. Например, длина ДНК самой большой хромосомы человека равна 8 см, а в составе хромосомы благодаря упаковке она не превышает 8 нм.

Отдельные участки ДНК, кодирующие первичную структуру белка (полипептида) и РНК, называются генами. Наследственная информация записана в линейной последовательности нуклеотидов. У разных организмов она строго индивидуальна и служит важнейшей характеристикой, отличающей одну молекулу ДНК от другой и, соответственно, один ген от другого. Животные разных видов отличаются друг от друга потому, что молекулы ДНК их клеток имеют разную последовательность нуклеотидов, то есть несут разную информацию.

Биосинтез ДНК

Биосинтез ДНК происходит путем репликации, обеспечивающей точное копирование генетической информации и передачу ее от поколения к поколению. Этот процесс происходит при участии фермента ДНК-полимеразы. Матрицей для синтеза ДНК может служить и однонитевая (одноцепочечная) молекула рибонуклеиновой кислоты (РНК), что происходит, например, при заражении клеток ретровирусами (в их числе и вирусом СПИДа). Жизненный цикл этих вирусов включает обратный поток информации - от РНК к ДНК. При этом комплементарное копирование РНК в ДНК осуществляется с помощью фермента обратной транскриптазы. В ходе жизнедеятельности организмов их ДНК под влиянием внешних факторов может подвергаться различным повреждениям (мутациям), связанным с нарушением структуры азотистых оснований. В ходе эволюции клетки выработали защитные механизмы, обеспечивающие восстановление ее исходной структуры - репарацию ДНК.

Разработаны эффективные методы определения последовательности нуклеотидов в молекулах ДНК, благодаря которым накоплена огромная информация о ее первичной структуре в генах многих вирусов, некоторых митохондрий и хлоропластов, а также отдельных генов и фрагментов крупных геномов. Полностью определена нуклеотидная последовательность ДНК дрожжей, червя нематоды (150 млн. пар нуклеотидов). В рамках международной программы «Геном человека» в основном завершено установление нуклеотидной последовательности всей ДНК в геноме человека (3 млрд. пар нуклеотидов).

Знание последовательности чередования нуклеотидов в молекуле ДНК важно при анализе наследственных заболеваний человека, при выделении отдельных генов и других функционально важных участков ДНК; оно позволяет, используя генетический код, безошибочно установить первичную структуру белков, кодируемых определенными генами. Информация о первичной структуре ДНК широко используется в генетической инженерии при создании рекомбинантных ДНК - молекул с заданными свойствами, включающих компоненты ДНК из разных организмов.

Дезоксирибонуклеиновая кислота, или ДНК - это строительный кирпичик жизни, код биологической памяти, который обеспечивает передачу генетических данных из поколение в поколение на протяжении всей эволюции живых существ. ДНК выполнена в форме двойной спирали, а также содержит информацию о структуре различных видов РНК и белков. Химически ДНК - это длинная полимерная молекула, состоящая из повторяющихся блоков нуклеотидов. Однако с биологической точки зрения ДНК - это ключ к пониманию жизни на самом тонком уровне, выход к экспериментам над геномом, которые позволяет расшифровка кода ДНА и будущее человечества как независимого от природной эволюции класса существ. За расшифровку структуры ДНК в 1953 году трое ученых получили Нобелевскую премию по физиологии и медицине 1962 года.

Не очень хочется разочаровывать тех, кто верит в реальность Несси (так часто называют чудовище, якобы обитающее в озере Лох-Несс в Шотландии), однако, из всех существующих версий о том, кто же все-таки обитает в глубинах Лох-Несс, эта звучит наиболее правдоподобно. Конечно, со 100% уверенностью заявить о том, что Несси — это угорь, ученые не могут, однако, у них появились весомые основания так думать. Так что, скорее всего, Несси окажется ничем иным, как повторением истории про лицо . Помните такую? Что только о нем не говорили, а позже выяснилось, что знаменитое лицо является ничем иным, как творчеством марсианского ветра, воды и буйного человеческого воображения.

Ученые из разных уголков мира пытаются стереть грань между искусственными и живыми организмами, чтобы в конечном итоге создать роботов, способных к самостоятельному произведению себе подобных. Первый шаг к этому недавно был сделан исследователями из Корнельского университета - они создали биологический материал, демонстрирующий три ключевых свойства живых организмов: самоорганизацию, способность к обмену веществ и развитие.

Понравилась статья? Поделиться с друзьями: