Определение типа эмульсии. Эмульсии К эмульсиям относятся

Суспензии

Суспензии - дисперсные системы с жидкой дисперсионной средой и твердой дисперсной фазой. Они похожи на золи, но отличаются значительной большим размером частиц. Получают их теми же методами, что и золи - диспергированием и конденсацией. Однако для практических целей суспензии получают чаще всего диспергированием нерастворимых твердых веществ в жидкой среде или взмучиванием в этой среде предварительно полученного порошка.

Не обладая седиментационной устойчивостью, суспензии могут быть устойчивы агрегативно, т. е. их частицы сохраняют постоянные размеры. Агрегативная устойчивость суспензий обусловлена тем, что их частицы имеют на поверхности двойной электрический слой или сольватную оболочку. Механизм образования двойного электрического слоя преимущественно адсорбционный, т. е. он формируется благодаря адсорбции одного из ионов дисперсионной среды электролита . Значение электрокинетического потенциала суспензии близко к потенциалу золя, и агрегативная устойчивость определяется электростатическим отталкиванием одноименно заряженных частиц.

Для получения стабильной суспензии необходимо:

1) достигнуть требуемую степень дисперсности труднорастворимого вещества в жидкой среде;

2) добавкой соответствующих поверхностно-активных веществ добиться, чтобы поверхность частиц дисперсной фазы смачивалась жидкой дисперсионной средой;

3) подобрать и ввести подходящий стабилизатор (электролит, ПАВ или защитный высокополимер).

Суспензии могут быть агрегативно устойчивы и без двойного электрического слоя. При наличии стабилизатора на границе раздела фаз образуются адсорбционные слои, препятствующие слипанию частиц. В случае полимерных стабилизаторов на поверхности частиц суспензии возникают механически прочные поверхностные студнеобразные пленки. При достаточной концентрации суспензии и стабилизатора-высокополимера поверхностные студнеобразные пленки объединяются в единый пространственный каркас-сетку и вся система застудневает.

Суспензии одновременно поглощают и рассеивают свет, хотя их частицы по размеру больше коллоидных частиц, при этом в отличие от опалесцирующих золей суспензии проявляют мутность не только при боковом освещении, но и в проходящем свете. Однако суспензии, так же как и золи, способны проявлять двойственное лучепреломление в потоке.

Поскольку частицы суспензий сравнительно больших размеров, в них нет броуновского движения, а, следовательно, они не проявляют таких молекулярно-кинетических свойств, как диффузия и осмос.

Для суспензий характерен ряд процессов, не свойственных коллоидным системам. К таким процессам относятся седиментация, флотация, фильтрация.


Фильтрация суспензий определяется дисперсностью и степенью агрегации частиц, а также образованием коагуляционной структуры и способностью ее к самоуплотнению в фильтрующем осадке. Поэтому фильтрация является сложным физико-химическим процессом, на который влияют все факторы, управляющие агрегированием частиц и развитием коагуляционных структур.

Суспензии имеют исключительно большое значение в природе и технике, далеко превосходящее значение типичных золей с твердой дисперсной фазой. К суспензиям при достаточном содержании влаги относятся почвы и грунты; глиняное тесто, используемое в гончарном, фаянсовом и фарфоровом производствах; цементные и известковые растворы, краски, лаки применяемые в строительном деле; графитовые и угольные суспензии используются для предотвращения образования накипи на котлах; суспензия металлического никеля применяется в качестве активного катализатора при гидрировании растительных масел; для облегчения процесса бурения применяют глинистые суспензии; в пищевой промышленности к суспензиям относятся шоколадная масса, крахмальное “молоко”, порошок какао в воде, помадные массы кондитерского производства.

Эмульсии

полярной неполярная или малополярная эмульгатором

Отличительной особенностью не очень концентрированных эмульсий является сферическая форма частиц (капелек).

От типичных лиофобных эмульсий отличаются так называемые критические лиофильные эмульсии (эмульсолы). Критические эмульсии - это системы, образующиеся обычно из двух ограниченно смешивающихся жидкостей (например, анилина и воды; изоамилового спирта и воды) при температурах, близких к критической температуре смешения, когда поверхностное натяжение на границе раздела фаз становится весьма малым и теплового движения молекул уже достаточно для диспергирования одной жидкости в другой. В результате такого самопроизвольного диспергирования образуется тончайшая эмульсия, в которой коалесценция (сливание) отдельных капелек уравновешивается стремлением обеих жидкостей равномерно распределяться в объеме.

Классификация эмульсий . Обычные лиофобные эмульсии классифицируют либо по полярности дисперсной фазы и дисперсионной среды, либо по концентрации дисперсной фазы в системе.

Согласно первой классификации, различают эмульсии неполярной или слабополярной жидкости в полярной (например, эмульсия масла в воде) - эмульсии первого рода или прямые и эмульсии полярной жидкости в неполярной (например, вода в масле) - эмульсии второго рода или обратные.

Эмульсии первого рода (прямые) обозначают м/в, где под буквой “м” подразумевается масло или иная неполярная жидкость, а под буквой “в” - вода или другая полярная жидкость. Эмульсии второго рода (обратные) обозначают соответственно в/м.

Тип эмульсии легко установить путем определения свойств ее дисперсионной среды. Для этого либо определяют способность эмульсии смачивать гидрофобную поверхность; либо проверяют возможность эмульсии разбавляться водой; либо испытывают способность эмульсии окрашиваться при введении в нее красителя, растворяющегося в дисперсионной среде; либо, наконец, определяют электропроводность эмульсии.

Согласно второй классификации, эмульсии делят на разбавленные, концентрированные и высококонцентрированные или желатинированные.

К разбавленным относятся эмульсии, содержащие до 0,1 % дисперсной фазы. Типичным примером такой системы может служить эмульсия машинного масла в конденсате, образующаяся при работе паровых машин. Разбавленные эмульсии по размеру частиц резко отличаются от концентрированных, являясь наиболее высокодисперсными. Диаметр капелек в разбавленных эмульсиях составляет порядка 10 -5 см, т. е. близок к размеру коллоидных частиц. Разбавленные эмульсии обычно образуются без введения в систему специальных эмульгаторов. Частицы этих эмульсий несут электрический заряд, который возникает в результате адсорбции ионов неорганических электролитов, присутствующих в среде в малых количествах.

Разбавленные эмульсии по свойствам более всего сходны с лиофобными золями. Они могут существовать в метастабильном состоянии лишь в очень благоприятных условиях (малая концентрация электролита). Влияние электролитов соответствует правилу Шульце-Гарди, многозарядные ионы изменяют знак заряда частиц, в устойчивых эмульсиях наблюдается заметный электрофорез и т. д.

Примером устойчивых эмульсий является сырая нефть, в которой капельки воды образуют эмульсии обратного типа, а также прямые разбавленные эмульсии масла в воде, образующиеся при конденсации отработанного пара в паровых двигателях.

К концентрированным относятся эмульсии со значительным содержанием дисперсной фазы (до 74 объемных процентов). Эта концентрация является максимальной потому, что она в случае монодисперсной эмульсии соответствует максимально возможному объемному содержанию недеформированных сферических капель независимо от их размеров.

Концентрированные эмульсии обычно получаются методом диспергирования и размер капель относительно велик и составляет 0,1-1,0 мкм и больше, поэтому капельки видны под обычным микроскопом. Такие системы не могут быть устойчивы без стабилизатора, легко седиментируют, причем седиментация происходит тем быстрее, чем больше разница между плотностями дисперсной фазы и дисперсионной среды. Если дисперсная фаза обладает меньшей плотностью, чем среда, то наблюдается всплывание капель дисперсной фазы.

К высококонцентрированным или желатинированным , эмульсиям относят системы с содержанием дисперсной фазы выше 74 объемных процентов. Отличительной особенностью таких эмульсий является взаимное деформирование капелек дисперсной фазы, и они приобретают форму многогранников (полиэдров), разделенных тонкими пленками - прослойками дисперсионной среды. Такая эмульсия при рассмотрении в микроскоп напоминает соты. Вследствие плотной упаковки капелек эти эмульсии не способны седиментировать и обладают свойствами, сходными со свойствами гелей, например, их можно резать ножом.

Высококонцентрированные эмульсии можно приготовить с содержанием дисперсной фазы до 99 %. Например, эмульгируя бензол в 1 % растворе олеата натрия, можно получить эмульсию, содержащую выше 99 процентов объемных дисперсной фазы. В такой предельно концентрированной эмульсии раствор эмульгатора находится между частицами дисперсной фазы в виде тончайших пленок (100 ангстрем и ниже).

Агрегативная устойчивость эмульсий и природа эмульгатора .

Эмульсии, как и все коллоидные системы, агрегативно неустойчивы из-за избытка свободной энергии на межфазной поверхности. Агрегативная неустойчивость эмульсий проявляется в самопроизвольном образовании агрегатов капелек с последующим слиянием (коалесценцией) отдельных капелек друг с другом. Это приводит к полному разрушению эмульсии и разделе ее на два слоя - жидкость дисперсной фазы и жидкость дисперсионной среды.

Агрегативную устойчивость эмульсий характеризуют либо скоростью ее расслаивания, либо продолжительностью существования (время жизни) отдельных капелек в контакте друг с другом или с межфазной поверхностью.

На агрегативную устойчивость эмульсий сильнее всего влияют природа и содержание в системе эмульгатора. Эмульгатор, адсорбируясь на межфазной границе, понижает межфазное поверхностное натяжение и в отдельных случаях может приводить даже к образованию равновесных коллоидных систем. Другое объяснение заключается в том, что при наличии стабилизатора на границе раздела фаз между капельками возникают силы отталкивания (энергетический барьер). Повышение концентрации эмульгатора в системе способствует устойчивости эмульсии.

Природа эмульгатора определяет не только устойчивость, но и тип эмульсии. Опыт показывает, что гидрофильные эмульгаторы, лучше растворимые в воде, чем в углеводородах, способствуют образованию эмульсий типа м/в, а гидрофобные эмульгаторы, лучше растворимые в углеводородах, - эмульсий типа в/м (правило Банкрофта). Это объяснимо, так как эмульгатор препятствует слипанию, или коалесценции, капелек только тогда, когда он находится у поверхности с наружной стороны капелек, т. е. лучше растворяется в дисперсионной среде.

В качестве эмульгаторов могут применяться самые различные по природе вещества: поверхностно-активные вещества, молекулы которых содержат ионогенные полярные группы, неионогенные ПАВ, высокомолекулярные соединения (ВМС). Эффективность эмульгатора характеризуется специальной величиной - гидрофильно-липофильным балансом (ГЛБ). Если число ГЛБ лежит в пределах 3-6, образуются эмульсии типа в/м. Эмульгаторы с числом ГЛБ 8-13 дают эмульсию типа м/в. Изменяя природу эмульгатора и его концентрацию, можно добиться обращения фаз эмульсии.

Стабилизирующее действие мыл и мылоподобных веществ на эмульсии типа м/в объясняется несколькими факторами устойчивости. Первый фактор - электрический заряд, возникший на поверхности капелек эмульсий, стабилизированных ионогенными мылами при адсорбции органических ионов мыла. В результате образуется двойной электрический слой, аналогичный тому, который существует на поверхности частиц типичных гидрофобных золей. Двойной электрический слой и обусловливает устойчивость эмульсий. Поэтому эмульсии м/в характеризуются свойствами, присущими типичным гидрозолям, т. е. для них соблюдается правило Шульце-Гарди , возможность перезарядки частиц эмульсий с помощью поливалентных ионов и т. д.

Чтобы происходила адсорбция органического иона, он должен хорошо адсорбироваться дисперсной фазой, т. е. иметь достаточно длинную углеводородную цепь. Поэтому эмульсии типа м/в могут быть стабилизированы только сравнительно высокомолекулярными мылами (щелочными солями лауриновой и более высокомолекулярных жирных кислот).

Второй фактор устойчивости концентрированных эмульсий типа м/в заключается в образовании на поверхности их капелек структурированных гелеобразных слоев эмульгатора, обладающих высокой структурной вязкостью и прочностью при одновременной гидратированности.

Устойчивость эмульсий типа в/м, стабилизованных мылами с поливалентным катионом, ранее объяснялась наличием на поверхности капелек эмульсии структурно-механического барьера. В последние годы было показано, что даже в неполярных средах может происходить некоторая диссоциация молекул эмульгатора. Соли поливалентных металлов и органических кислот в углеводородных средах обычно имеют константы диссоциации порядка 10 -8 , следовательно, если, например, концентрация такой соли в бензоле равна 10 ммоль/л, то концентрация ионов в растворе будет иметь значение порядка 10 -14 .

При таких условиях двойной электрический слой будет очень диффузным, его толщина составит несколько микрометров. Емкость двойного слоя в неполярной жидкости весьма невелика и нужен очень небольшой заряд для того, чтобы обусловить значительный поверхностный потенциал. Таким образом, электростатические силы отталкивания могут играть существенную роль и в устойчивости обратных эмульсий, особенно не очень концентрированных.

Эмульгирующее действие как ионогенных, так и неионогенных ПАВ тем эффективнее, чем лучше сбалансированы полярные и неполярные части молекулы эмульгатора между обеими фазами эмульсии. Дифильная молекула хорошего эмульгатора должна обладать сродством как к полярным, так и к неполярным средам, только в этом случае она будет находиться на межфазной поверхности. Сбалансированность молекул эмульгатора определяется длиной углеводородной цепи и сродством ионогенной или полярной группы к воде (рис. 11.2).

Рис. 11.2. Поведение различно сбалансированных дифильных молекул эмульгатора:

а - молекулы с преобладающей полярной частью; б - хорошо сбалансированные молекулы ; в - молекулы с преобладающей полярной частью

Именно хорошей сбалансированностью объясняется наилучшее стабилизирующее действие мыл, содержащих в углеводородной цепочке от 12 до 18 атомов углерода. Сбалансированностью молекул эмульгатора объясняется и род эмульсий, которые получаются с применением этого эмульгатора. Эмульгаторы с превалирующим действием в молекуле полярной группы над неполярной и которые лучше растворяются в воде, образуют эмульсии первого рода (м/в). Эмульгаторы, у которых действие неполярной группы молекулы преобладает над действием полярной и которые лучше растворяются в углеводородах, способствуют образованию эмульсий второго рода (в/м).

Итак, несомненным и вполне однозначным является факт стабилизации прямых эмульсий (м/в) гидрофильными веществами, обратных (в/м) - гидрофобными. Дисперсионной средой эмульсии становится жидкость, лучше взаимодействующая с эмульгатором.

Уже давно известно, что хорошей стабилизирующей способностью обладают не только ПАВ, но и тонкоизмельченные порошки, например, глина, мел, сажа, гипс и др. При встряхивании полярной жидкости в неполярной в присутствии твердого эмульгатора его крупинки прилипают к межфазной поверхности, причем большая часть поверхности частиц эмульгатора находится в той жидкости, которая их лучше смачивает. На капельках образуется как бы “бронь”, предотвращающая их коалесценцию.

Если твердый эмульгатор лучше смачивается водой (например каолин), такая броня возникает со стороны водной фазы, при этом образуется эмульсия типа м/в. Если же твердый эмульгатор лучше смачивается неполярным углеводородом (например сажа), то образуется эмульсия типа в/м (рис.11.3) В случаях Iа и IIб крупинки твердого эмульгатора находятся с наружной стороны капель и эмульсии устойчивы. В случаях Iб и IIа крупинки твердого эмульгатора находились бы у межфазной поверхности с внутренней стороны капель, в результате чего образование таких эмульсий невозможно.

Рис. 11.3. Модель эмульгирующего действия порошковых эмульгаторов:

I - гидрофильный эмульгатор (каолин); II - гидрофобный эмульгатор (сажа)

Стабилизация эмульсий твердыми эмульгаторами возможна только при условии, что размер частиц порошка меньше размера капелек эмульсии. Но слишком малые частицы порошка из-за броуновского движения не прилипают к поверхности капелек и не образуют защитного слоя.

Методы получения и разрушения эмульсий . Эмульсии получают механическим диспергированием фазы в дисперсионной среде в присутствии соответствующего эмульгатора. Жидкости сильно перемешивают, встряхивают, подвергают вибрационному воздействию. Для этого используют специальные мешалки, коллоидные мельницы. Иногда полученные грубые эмульсии подвергают дополнительной гомогенизации в специальных гомогенизаторах разных конструкций. При обработке в таких гомогенизаторах диаметр капелек понижается, при этом значительно увеличивается седиментационная устойчивость.

Часто требуется не получить эмульсию, а предупредить ее образование или разрушить (диэмульгировать) уже полученную систему. Эмульсии типа м/в, полученные с применением ионогенных эмульгаторов, обычно разрушают с помощью коагуляции электролитами с поливалентными ионами.

Эмульсии, стабилизированные неионогенными стабилизаторами, разрушаются гораздо труднее. Эффективным способом разрушения таких эмульсий является нагревание, введение в систему ПАВ, вытесняющего из адсорбционного слоя эмульгатор, но не способного стабилизировать эмульсию. Эмульсии можно также разрушать центрифугированием, фильтрацией, электрофорезом.

Обращение фаз эмульсий . При введении в эмульсию при интенсивном перемешивании большого количества ПАВ, являющегося стабилизатором эмульсий противоположного типа, первоначальная эмульсия может обращаться , т. е. дисперсная фаза становится дисперсионной средой, а дисперсионная среда - дисперсной фазой. Так, эмульсии типа м/в, стабилизованные олеатом натрия, могут быть превращены в эмульсию типа в/м путем введения в систему олеата кальция.

Обращение эмульсий может быть вызвано и длительным механическим воздействием. Так, сбивание сливок (м/в) ведет к получению масла (в/м).

Практическое значение эмульсий . К эмульсиям относятся молоко, сливки, майонез, яичный желток, латексы, битумные эмульсии, средства для опрыскивания растений, эмульсии воды в нефти и др. В фармацевтической промышленности многие лекарства применяются в виде эмульсий; в парфюмерной эмульсии - кремы.

Пены

Пенами называются грубые высококонцентрированные дисперсные системы, в которых дисперсионная среда - жидкость, а дисперсная фаза - газ. Пузырьки газа имеют размеры порядка нескольких миллиметров, а в отдельных случаях и сантиметров, форму многогранников и отделены друг от друга очень тонкими слоями жидкой дисперсионной среды. Пленки часто обнаруживают интерференцию, следовательно, их толщина соизмерима с длиной световых волн. Большой размер газовых пузырьков и тесное расположение их в пене исключают возможность броуновского движения устойчивые пены обладают некоторой жесткостью или механической прочностью. По строению обычные пены напоминают высококонцентрированные эмульсии.

Устойчивую пену можно получить только в присутствии стабилизатора - пенообразователя. Чистые жидкости не обладают способностью образовывать пену, наличие пены всегда говорит о присутствии в жидкости посторонних веществ, загрязнений.

Устойчивость пены зависит от природы пенообразователя, его концентрации, температуры, вязкости жидкости и присутствия электролитов. К типичным пенообразователям водных пен относятся такие ПАВ, как мыла, спирты, белки, сапонин, жирные кислоты и т. д. Низкомолекулярные ПАВ, уменьшая поверхностное натяжение (s), облегчают образование пены, но не придают ей стабильности, и она быстро разрушается. Пенообразующие вещества с длинной молекулярной цепью, адсорбируясь на границе вода -воздух, образуют высоковязкую структурированную пену, препятствующую стеканию жидкости. Толщина слоя жидкости между пузырьками газа уменьшается медленно, и пена может существовать долго.

С увеличением вязкости жидкости устойчивость пены возрастает. Электролиты, как правило, снижают время жизни пены. Таким образом, существует несколько факторов, объясняющих устойчивость пен. В настоящее время все больше исследователей приходят к выводу, что вообще не может быть единой теории устойчивости пен и что причины существования пен не зависят от пенообразователей и условий получения.

Методы получения и разрушения пен, их практическое значение . Пены получают путем пропускания пузырьков соответствующего газа (обычно воздуха) через раствор пенообразователя или путем интенсивного механического перемешивания раствора пенообразователя.

В ряде случаев образование пены нежелательно, она мешает перемешиванию и выпариванию жидкостей. Особенно вредны пены, образующиеся в сточных водах, которые содержат пенообразователи. Эти пены покрывают поверхность водоемов и, прекращая доступ кислорода в воду, убивают все живое. Пену можно разрушить введением в нее веществ, которые, обладая высокой поверхностной активностью, сами не дают пены. Такие вещества получили название пеногасителей. Эффективными пеногасителями являются сложные эфиры, жирные кислоты, спирты.

Другой метод пеногашения заключается в “пережигании” пены при воздействии высоких температур. Пены можно разрушить и механическим путем, продувая воздух над поверхностью пенящейся жидкости при кипении. Пленка как бы высыхает, и пузырьки образовавшейся пены разрушаются.

Пенообразование и пены имеют большое практическое значение. Известно положительное действие пен, мыла и других моющих средств при удалении загрязнений с любой поверхности. Очень важным является использование пен при тушении пожаров. Применяемая в этом случае пена содержит в виде дисперсной фазы диоксид углерода, имеет невысокую плотность, что позволяет применять ее для тушения горящих органических жидкостей. Устойчивые пены широко используются в флотационных процессах, например, при обогащении руд и минералов.

Эмульсии - дисперсные системы, состоящие из двух несмешивающихся жидкостей. Радиус взвешенных капелек жидкости в эмульсиях находится в пределах 10 -3 -10 -5 см. Для образования эмульсий берут жидкости, сильно отличающиеся по типу внутримолекулярных связей. Одна из них должна быть ярко выраженной полярной жидкостью (обычно вода), а вторая неполярная или малополярная (какая-либо органическая жидкость, не растворимая в воде и называемая независимо от ее химического состава “масло”). Обе жидкости, образующие эмульсию, должны быть нерастворимы или малорастворимы друг в друге. В системе должен присутствовать стабилизатор, который в этом случае называется эмульгатором . Эмульсии тем седиментационно устойчивее, чем ближе плотности обеих фаз.

Эмульсии находят разнообразное применение в производстве продуктов питания. Часть продуктов питания и продукции пищевой промышленности представляет собой эмульсии. К эмульсиям относятся молоко, сливки, сливочное масло, сметана, маргарин, т.е. жиросодержащие продукты питания.

В состав молока (эмульсия типа М/В) входят жидкие и отчасти твердые жиры, представляющие собой дисперсную фазу, а в водной дисперсионной среде содержатся белки, различные соли и сахар. Сливки - более концентрированные эмульсии по сравнению с молоком. Маргарин представляет собой концентрированную эмульсию типа В/М, в которой в качестве дисперсной фазы служит вода, а дисперсионной средой является очищенный от примесей пищевой жир. Пищевой жир получают из соевых бобов, подсолнечного, хлопкового или кукурузного масла. Кроме того, в маргарин вводят витамины, красящие и другие вещества. Майонез является концентрированной эмульсией растительного масла типа М/В. Дисперсионной средой является вода, содержащая яичный желток, уксус, горчицу, сахар, специи. Сливочное масло - это высококонцентрированная структурированная система, в состав которой входят прямая и обратная эмульсии - в большей степени М/В и отчасти В/М.

Эмульсии широко используют в пищевой технологии. Жиры в тесто вводят в виде эмульсии типа М/В, что значительно улучшает качество хлеба и хлебобулочных изделий.

Следует отметить, что эмульсии играют большую роль в жизнедеятельности организма человека. В состав крови входит эмульсия, дисперсной фазой которой являются эритроциты, а в качестве эмульгаторов выступают белки. Жиры, необходимая составная часть продуктов питания, нерастворимы в воде и усваиваются только в эмульгированном состоянии.

Молоко, сливки, сметана, сливочное масло являются эмульсиями и дополнительного эмульгирования не требуют. Растительное масло и животный жир в водной среде не образуют эмульсий. Поэтому перед усвоением подобных продуктов они сначала переводятся в эмульгированное состояние. Эмульгирование осуществляется сначала в желудке, а потом в двенадцатиперстной кишке. В качестве эмульгатора выступает желчь, в состав которой входят желчные кислоты - монокарбоновые оксикислоты, относящиеся к классу стероидов. При относительно высоких значениях рН, равных 8,0-8,5, образуются соли желчных кислот. Эти соли являются хорошими эмульгаторами.

Межфазовое поверхностное натяжение воды на границе с маслом σжжсоставляет примерно 40 мДж/м2. Растворы желчных кислот снижают его в сотни раз, что обеспечивает выполнение условий (15.2) и (15.3) - система из лиофобной превращается в лиофильную; в желудке происходит самопроизвольное диспергирование жира, а образующаяся эмульсия будет устойчивой. Диспергированию жира и образованию эмульсий способствует перистальтическое движение кишечника. В результате образуется прямая эмульсия жира в воде типа М/В. Подобная эмульсия через стенки тонких кишок поступает в лимфу и кровь и усваивается организмом.



Лекарственные препараты часто также представляют собой эмульсии. Для введения их в организм через рот рекомендуется применять прямые эмульсии типа М/В. Через кожу в организм вводят лекарственные препараты в виде обратных эмульсий типа В/М, так как кожа является препятствием для воды и растворенных в ней веществ и легко пропускает другие жидкости.

Эмульсии широко используются не только в пищевой, но и в ряде других отраслей промышленности. Так, основной процесс мыловарения связан с образованием прямой эмульсии М/В. Эмульгирование имеет место при обезвоживании сырой нефти, при производстве нефтепродуктов и очистке нефтяных емкостей, получении асфальтовых смесей и переработке натурального каучука, производстве кинофотоматериалов, получении консистентных смазок и охлаждающих жидкостей для обработки металлов, а также в ряде других технологических процессах.

Синтетические лаки, представляющие собой эмульсии синтетического каучука и смолы, используют для склеивания и приклеивания бумаги, импрегнировании тканей, для приготовления заменителей кожи и различных резиновых изделий. Эмульсионные краски - нетоксичны и пожаро-взрыво-безопасны. Для опрыскивания растений препараты обычно применяют в виде эмульсий. К природным эмульсиям относится ряд ценнейших растительных и животных продуктов.

В промышленных условиях нередко приходится вести борьбу с образующимися эмульсиями. Например, при обезвоживании различных нефтяных продуктов, в бумажной и кожевенной промышленности для предотвращения осаждения капель дисперсной фазы на волокне.

Г л а в а 16

ПЕНЫ

Пены отличаются от других дисперсных систем подвижностью и способностью к изменению поверхности раздела фаз. Быстрое снижение поверхности раздела фаз сокращает время жизни пены и обусловливает необходимость применения ПАВ для сохранения устойчивости пен. Значительное увеличение удельной поверхности подвижной границы раздела фаз придает пенам особые свойства.

Пены образуются в некоторых технологических процессах, а также в условиях применения различных препаратов.

Эмульсией называют гомогенную дисперсионную систему из двух несмешивающихся жидкостей. Внешне она практически ничем не отличается от просто однородной жидкости. Отличие эмульсии от последней состоит в наличии микроскопических капель фазы, распределенных в основной жидкости, т.е. дисперсионной среде. Самым простым примером такой системы, с которым каждый встречался в быту, является молоко. В нем молочный жир распределен в воде.

Виды эмульсий

Основными факторами, влияющими на отношение эмульсии к тому или иному виду, являются:
- состав жидких фаз
- соотношение между жидкими фазами
- способ эмульгирования
- природа эмульгатора
- другие факторы

В соответствие с этими пунктами выделяют такие виды эмульсий:

Прямые. Они образовываются из неполярной жидкости, диспергированной в полярной среде, обычно это «масло в воде». Самыми лучшими эмульгаторами для прямых эмульсий являются калийные и натриевые соли жирных кислот, т.е. мыла, которые, адсорбируясь на поверхности капель, уменьшают поверхностное натяжение, повышают механическую прочность, защищают от разрушения.

Обратные (инвертные) эмульсии. К таким эмульсиям относятся системы типа вода в масле. Эмульгаторы – нерастворимые соли жирных кислот, например, кальциевые, алюминиевые, магниевые.

Лиофильные. Эти эмульсии способны самопроизвольно образовываться, так как обладают термодинамической устойчивостью. Образуются возле критических температур смешения двух фаз. Пример такой эмульсии – смазочно-охлаждающая жидкость.

Лиофобные. Данные эмульсии не образуются самостоятельно, так как не обладают термодинамической устойчивостью. Механические воздействия либо процесс образования капель одной из фаз из пересыщенного раствора являются основными путями возникновения лиофобных эмульсий.

Способы получения эмульсий

Существует два пути получения эмульсий: дробление капель, образование и разрыв пленок.

Дробление капель. Дисперсионную фазу медленно к дисперсионной среде в присутствии эмульгатора при перемешивании. В результате образуется много мелких капель. Количество капель и их размер зависит от природы эмульгатора, скорости перемешивания, температуры, рН среды, скорости введения дисперисонной фазы.

Образование и разрыв пленок. Жидкость, которая не смешивается с дисперсионной средой, образовывает на ее поверхности пленку, которая разрывается пузырьками воздуха, выходящими из специальной трубки на дне сосуда. При этом происходит интенсивное перемешивание и эмульгирование. Аналогичным механизмом действия, но более эффективным, является

ПЛАН ЗАНЯТИЯ 26.

Преподаватель : Чумаченко Е.В.

Тема: «Общая характеристика грубодисперсных систем, их классификация. Характеристика эмульсий».

Цели:

Образовательная: изучить свойства грубодисперсных систем и их классификацию.

Воспитательная: привитие интереса к дисциплине.

Развивающая: развитие умения использовать теоретические знания на практике.

Учебно-методическое обеспечение и оснащение: мультимедийное оборудование, компьютер.

Тип занятия – сообщение новых знаний.

Вид занятия – лекция – беседа (с использованием технических средств, презентации, химических опытов).

Методы обучения:

1. По источникам передачи и характеру восприятия информации -

наглядный (демонстрация презентации).

2. По характеру познавательной деятельности – объяснительно-иллюстративный.

Межпредметные связи физика.

Ход занятия.

Организационный момент.

Изучение нового материала:

1. Общие сведения о грубодисперсных системах.

2. Характеристика эмульсий.

Закрепление материала

Обсуждение материала по вопросам.

Домашние задание:

Общие сведения о грубодисперсных системах.

Системы, в которых размер частиц дисперсной фазы не менее 10~ 5 см, называются грубодисперсными. К ним относятся эмульсии, пены, порошки и суспензии, име­ющие более низкую степень дисперсности, чем коллоиды. Грубодисперсные системы по ряду свойств приближа­ются к микрогетерогенным системам, поэтому имеют много общего с коллоидами.

Подобно коллоидам они гетерогенны и обладают сильно развитой поверхностью раздела фаз. Наличие значительной удельной поверхности согласно второму закону термодинамики приводит эти системы к агрегативной неустойчивости. Поэтому агрегативную устойчи­вость таким системам можно придать добавлением стабилизатора, который адсорбируется на частицах дисперс­ной фазы.

Из-за отсутствия броуновского движения эмульсии, пены и суспензии кинетически неустойчивы. В них на­блюдается или оседание частиц под влиянием сил тя­жести (когда плотность вещества частиц больше плот­ности среды), или всплывание частиц (если плотность вещества частиц меньше плотности среды).

Грубодисперсные системы широко распространены в природе и применяются в практической деятельности че­ловека. Особенно важное значение имеют они в техноло­гии приготовления пищи, ибо большинство кулинарных изделий или полуфабрикатов являются эмульсиями, по­рошками, пенами или суспензиями.

Характеристика эмульсий.

Строение и получение эмульсии. Эмульсии - гетеро­генные системы из взаимно нерастворимых жидкостей. В таких системах одна из жидкостей (дисперсная фаза) извешена в другой (дисперсионной среде) в виде ка­пелек.

Чаще всего эмульсии состоят из воды и второй жид­кости, которую принято обозначать как «масло». Так, к числу «масел» относятся бензин, керосин, бензол, масламинеральные, животные, растительные и другие неполярные жидкости.

Можно диспергировать гидрофобную жидкость в во­де, например приготовить эмульсию бензола в воде. Вполне возможно диспергировать и воду в бензоле и получить при этом эмульсию воды в бензоле. Следователь­но, принципиально могут быть эмульсии двух типов: масло в воде (сокращено м/в), где дисперсной фазой будет масло, а дисперсионной средой - вода, и вода в масле (сокращено в/м), когда дисперсная фаза - вода, дисперсионная среда - масло. Примером эмульсии первого типа может служить коровье молоко (эмульсия жира в гидрозоле белка), а эмульсии второго типа - природная нефть, различные медицинские мази (эмульсии воды в масле).

Эмульсии обычно получают механическим диспергированием (эмульгированием) одной жидкости в другой.

Эмульгируемые жидкости сильно перемешивают, встряхивают или подвергают вибрационному воздействию с помощью мешалок, коллоидных мельниц, ультразвука. В кулинарной практике это выполняется на специальных взбивальных машинах или иногда вручную различными взбивалками.

Благодаря огромному увеличению поверхности разде­ла между двумя жидкостями эмульсия приобретает боль­шой запас свободной поверхностной энергии Е и стано­вится термодинамически неустойчивой. Согласно второму закону термодинамики такая система будет стремить­ся самопроизвольно перейти в устойчивое состояние пу­тем уменьшения запаса свободной поверхностной энер­гии. Этот самопроизвольный процесс может происходить или за счет уменьшения поверхностного натяжения σ, или за счет уменьшения величины поверхности S, так как свободная поверхностная энергия связана с поверхност­ным натяжением и суммарной величиной поверхности уравнением E=σS.

Если понижение запаса свободной поверхностной энергии пойдет за счет уменьшения суммарной поверх­ности системы, это выразится в слиянии капелек жира, в уменьшении числа жировых капелек. Слияние капель эмульсии называют коалесценцией, она подобна коагу­ляции и быстро заканчивается расслоением системы на две отдельные жидкие фазы с минимальной поверх­ностью раздела. Такое слияние приводит к разрушению эмульсии. Следовательно, подобно коллоидам, эмульсии являются агрегативно неустойчивыми системами.

Понижения поверхностной энергии эмульсии можно добиться уменьшением поверхностного натяжения. Это­го можно достичь введением в систему какого-либо по­верхностно-активного вещества, способного адсорбиро­ваться на поверхности капелек эмульсии и препятство­вать их слиянию. Подобные вещества, стабилизирующие эмульсию, называют стабилизаторами или эмульгатора­ми . При этом суммарная поверхность системы остается неизменной, а образующаяся эмульсия становится агре­гативно устойчивой.

К разбавленным эмульсиям относятся системы, в ко­торых объемная доля дисперсной фазы менее 1%. Они устойчивы без специальных эмульгаторов. Устойчивость разбавленных эмульсий объясняется довольно малыми размерами капелек жидкости и незначительной концен­трацией этих систем.

В концентрированных эмульсиях объемная доля дис­персной фазы от 1 до 74%. Увеличение концентрации приводит к понижению агрегативной устойчивости, ибо увеличивается вероятность столкновения, а следователь­но, и коалесценция капель. Поэтому для повышения аг­регативной устойчивости концентрированных эмульсий вводят эмульгатор, который, адсорбируясь на границе раздела двух жидкостей, уменьшает поверхностное на­тяжение. Образующиеся на поверхности капелек эмуль­гированной жидкости прочные адсорбционные пленки препятствуют коалесценция. Система становится агрегативно устойчивой. В зависимости от типа эмульсий следует брать гидрофильные или гидрофобные эмульга­торы той или иной степени дисперсности.

Эмульгатор должен быть подобен той жидкости, ко­торая образует дисперсионную среду. Так, эмульсии типа м/в стабилизируются растворимыми в воде высоко­молекулярными соединениями, например белками или водорастворимыми гидрофильными мылами (олеатом натрия и вообще мылами щелочных металлов). Эмульга­торами при получении эмульсии типа в/м служат высоко­молекулярные вещества, нерастворимые в воде, но хоро­шо растворимые в углеводородах (каучук, смолы и др.), а также нерастворимые в воде мыла многовалентных ме­таллов.

В адсорбционных слоях молекулы эмульгатора, содер­жащие полярные и неполярные группы (мыла, белки), ориентируются полярными концами к полярной жидкос­ти, а неполярными к неполярной. На поверхности капе­лек жидкости в эмульсиях типа м/в и в/м будет наблю­даться противоположная ориентация молекул таких эмульгаторов.

Подобные оболочки из поверхностно-активных ве­ществ на поверхности капелек эмульсии довольно проч­ны и упруги. При соударении частиц они, как правило, не разрушаются - эмульсии приобретают устойчивость.

Кроме высокомолекулярных соединений и мыл эмульгаторами для эмульсий как первого, так и второго типа могут служить порошки, так называемые твердые эмуль­гаторы. Однако они менее эффективны, чем мыла и высокополимеры. Порошки должны быть высокодисперсными и обязательно должны лучше смачиваться той жидкостью, которая служит дисперсионной средой; в этом случае большая часть твердых частиц будет на­ходиться с внешней, наружной стороны капелек, образуя оболочки высокой прочности, которые предохраняют их от коалесценции при столкновениях. Если же частицы порошка лучше смачиваются жидкостью, которая пред­ставляет собой дисперсную фазу, то большая часть каждой частицы окажется втянутой внутрь капель, поверх­ность капелек эмульсии окажется незащищенной, и та­кие эмульсии будут коалесцировать. Поэтому гидрофильные порошки, например мука, мел, оксид же­леза (III), глина, стабилизируют эмульсии типа м/в, тогда как сажа и другие гидрофобные порошки стабили­зируют эмульсии типа в/м.

Высококонцентрированные эмульсии с концентрацией дисперсной фазы более 74% называют желатинирован­ными . В подобных эмульсиях капельки дисперсной фазы сильно деформированы. Из шариков они превращаются в многогранники, последние могут быть плотнее упако­ваны. Поэтому высококонцентрированные эмульсии мо­гут содержать дисперсной фазы до 99% . Дисперсионная среда в таких эмульсиях превращается в тонкие пленки, разделяющие дисперсную фазу на многогранники. Желатированные эмульсии твердообразны, сохраняют свою форму, не растекаются. Примером мо­гут служить сливочное масло, маргарин, майонез, гус­тые кремы.

Разрушение эмульсий. Во многих случаях разрушение эмульсии - деэмульгирование - может быть не менее важным, чем их образование. Деэмульгирование сводит­ся к коалесценции эмульсии, т. е. к расслаиванию ее на свободные жидкие фазы. Разрушение эмульсий может быть достигнуто следующими способами:

1) химическим разрушением защитных пленок соот­ветствующими веществами, например разрушение серной кислотой эмульгатора молока при определении его жирности;

2) разрушением защитных пленок механическим воз­действием , например, при сбивании сметаны и сливок для получения масла (здесь де эмульгирование сопровож­дается концентрированием, т. е. образованием желатини­рованной эмульсии);

3) термическим разрушением - расслоением эмуль­сий при нагревании ; при этом уменьшается адсорбция эмульгатора и увеличивается число столкновений капе­лек, что ведет к их слиянию. Такое разрушение (расслое­ние) эмульсий наблюдается при длительном кипячении соусов, при изготовлении топленого масла. Разрушение эмульсий происходит и при понижении температуры - вымораживании. Например, при хранении майонеза ниже -15° С замерзает дисперсионная среда, что при последующем оттаивании ведет к его разрушению.

Значение эмульсий . Эмульсии широко распростране­ны в природе (сырая нефть, млечный сок растений-кау­чуконосов). Эмульсии используются и образуются при многих производственных процессах. Эмульсиями явля­ются разнообразные продукты питания; молоко, сливоч­ное масло, маргарин, сливки.

Молоко - это полидисперсная система, компоненты которой находятся в различной степени дисперсности. В теплом молоке жир находится в эмульгированном со­стоянии, а белковые вещества и часть солей - в коллоид­ном, другая часть солей в виде истинных растворов. При стоянии молока образуется слой концентрированной эмульсии - сливки. Для повышения устойчивости его гомогенизируют. В процессе гомогенизации крупные жи­ровые капельки молока уменьшаются в несколько раз. Такое гомогенизированное молоко очень устойчи­во и не образует слоя сливок в течение нескольких ме­сяцев.

Из молока изготовляют сливочное масло и маргарин. Маргарин представляет собой эмульсию типа в/м, а сли­вочное масло - сложную структурированную эмульсию, содержащую элементы обоих типов эмульсии м/в и в/м в разных соотношениях.

Велико значение эмульсий и эмульгирования в кули­нарной практике. Физиология питания ставит перед тех­нологией приготовления пищи задачу не только увели­чить усвояемость пищи, но и уменьшить энергетические затраты на ее усвоение и облегчить течение биохимических реакций в пищеварительном тракте. С этой точки зрения имеет большое значение, например, эмульги­рование жиров в кулинарной практике. В качестве примера рассмотрим особенности приготовления майо­незов.

Дисперсионная среда в этих эмульсиях - вода желт­ков и уксуса, дисперсная фаза - растительное масло. Эмульгаторами служат лецитин и виттелин желтка и белки порошка горчицы. Жира в майонезе содержится 75%. Он раздроблен на мельчайшие шарики. При ручном взбивании размер их составляет 1,5-2 10 -3 см, а при машинном - от 10 -4 до 4 10 -4 . В 1 г соуса содержится до 1 10 12 жировых шариков. На такое раз­дробление жира приходится затрачивать значительную работу. Если бы жир входил в пищу неэмульгированным, то эту работу должен был бы выполнять организм человека. Кроме того, если поверхность 1 см 3 масла равна всего 6 см 2 , то в майонезе она достигает 60000 см 2 . При таком увеличении поверхности во много раз облег­чается реакция между жирами и водой под действием ферментов пищеварительного тракта. Чем мельче жировые шарики, тем устойчивее полу­чается эмульсия. Однако большая степень раздробления жира (дисперсность) в соусах типа майонез играет и отрицательную роль.

Большая поверхность приводит к ускорению процессов окисления и прогоркания жиров под действием света и кислорода. Поэтому майонез необ­ходимо хранить в темном месте и в герметический таре.

Нежелательным является эмульгирование жира в процессе варки мясных бульонов (обычно при сильном кипении), так как эмульгированные жиры легко гидролизуются (омыляются) и выделяющиеся жирные кислоты придают бульонам вкус сала и запах мыла.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ УКРАИНЫ

НАЦИОНАЛЬНЫЙ ФАРМАЦЕВТИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ТЕХНОЛОГИИ ЛЕКАРСТВ

АПТЕЧНАЯ ТЕХНОЛОГИЯ ЛЕКАРСТВ

ЭМУЛЬСИИ

Лекция для студентов специальностей «Фармация» и «Клиническая фармация»

Заведующая кафедрой технологии лекарств НФаУ, заслуженный деятель науки и техники Украины, доктор фармацевтических наук, профессор

Татьяна Григорьевна Ярных

ПЛАН ЛЕЦИИ

Введение

1. Определение и характеристика эмульсий

2. Типы эмульсий

3. Характеристика и классификация эмульгаторов

4. Факторы, влияющие на стабильность эмульсий

5. Технология эмульсий

6. Оценка качества и хранение эмульсий

7. Основные направления совершенствования эмульсий Вопросы для самоконтроля Литература

ВВЕДЕНИЕ

В наше время внимание ученых всего мира все больше обращают на себя фармацевтические эмульсии, которые кроме перорального употребления, стали использоваться также для парентерального питания и как кровезамещающие. Эмульсии также интенсивно используют в различных лекарственных формах для местного применения: мазях, кремах, аэрозолях, которые занимают на сегодня качественно новый уровень в связи с достижениями науки в области создания эмульсий и расширением ассортимента вспомогательных веществ.

Перспективность эмульсионных лекарственных форм обуславливается некоторыми преимуществами: в составе эмульсий можно соединять несмешивающиеся жидкости, маскировать неприятный вкус, регулировать биодоступность лекарственных веществ, устранять раздражающее действие на кожу и слизистые (что свойственно некоторым лекарственным веществам).

Основными показателями, характеризующими качество фармацевтических эмульсий, являются биодоступность лекарственных веществ, а также их стабильность при хранении (физическая, химическая, микробиологическая). На биодоступность лекарственных веществ из эмульсий влияют различные биофармацевтические факторы, в частности: природа вещества (гидрофильная или липофильная); в каком состоянии находится лекарственное вещество (в виде раствора, суспензии или заэмульгировано); фаза локализации лекарственного вещества (вода, масло); технология (достижение оптимальной скорости всасывания лекарственных веществ возможно при использовании определенных технологических приемов).

Основной проблемой технологии эмульсий является их стабилизация. В связи с вышеизложенным, основными тенденциями развития фармацевтических эмульсий является повышение терапевтической эффективности и физической стойкости, что и обуславливает практическую необходимость изучения данной темы.

Эмульсии – однородная по внешнему виду лекарственная форма, состоящая из взаимно нерастворимых тонко диспергированных жидкостей, предназначенная для внутреннего, наружного или парентерального применения.

Применение фармацевтических эмульсий

парентеральное:

¾ жировые эмульсии для парентерального питания

¾ эмульсии перфторуглеродов, выступающие в роли кровезаменителей

1. ОПРЕДЕЛЕНИЕ И ХАРАКТЕРИСТИКА ЭМУЛЬСИЙ

Свойства фармацевтических эмульсий

положительные отрицательные

в фармацевтических эмульсиях

неустойчивость эмульсий

имеется возможность

как дисперсных систем

совмещать в одном

под влиянием различных

лекарственном препарате

факторов (температуры,

несмешивающиеся жидкости

воздуха, света)

регулировать биодоступность

способность подвергаться

лекарственных веществ

микробной обсемененности

(способствовать быстрому

(эмульсии – благоприятная

и полному высвобождению

среда для развития

или обеспечить пролонгацию

микроорганизмов)

действия)

относительная длительность

устранять раздражающее

приготовления, требующая

действие на кожу и слизистые,

соответствующих

свойственные отдельным

технологических приёмов и

лекарственным веществам

специального технологического

возможность маскировать

оборудования

неприятный вкус и запах

необходимость применения

некоторых лекарственных

эмульгаторов для стабилизации

дисперсной системы

1. ОПРЕДЕЛЕНИЕ И ХАРАКТЕРИСТИКА ЭМУЛЬСИЙ

Размер частиц (капелек) дисперсной фазы: от 1 до 50 мкм.

Для приготовления эмульсий используют:

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ОБРАЗОВАНИЯ ЭМУЛЬСИЙ

Теории образования эмульсий

Теория объема фаз (W.Ostwald)

теория образования адсорбционной оболочки на поверхности дисперсной фазы

(G.Clowes, W Bancroft и др.)

Теория снижения межфазного поверхностного натяжения (I.Langmuir, W.D.Harkins и др.)

Теория вязкости (H.N.Holmes, W.D.Child)

гидратационная теория (R.Fischer)

2. ТИПЫ ЭМУЛЬСИЙ

Масло-вода (М/В) – прямые, или первого рода (водосмываемые)

Вода-масло (В/М) – обратные, или второго рода (несмываемые водой)

Вода-масло-вода (В/М/В) или множественные

Масло-вода-масло (М/В/М) эмульсии

СПОСОБЫ ОПРЕДЕЛЕНИЯ ТИПА ЭМУЛЬСИЙ

Метод разбавления

Метод окраски

Метод кондуктометрический

Метод парафинированной пластинки

Эмульгаторы – это дифильные ПАВ, ориентированно распределяющиеся на границе раздела двух жидкостей.

При выборе эмульгаторов учитывают

Механизм стабилизирующего действия эмульгаторов

Эмульгаторы, адсорбируясь на границе фаз, понижают поверхностное натяжение и накапливаются на поверхности раздела,

а главное, обволакивая капельки диспергируемого вещества, образуют адсорбционную пленку –

основной фактор стабилизации эмульсий.

Защитные пленки могут состоять из одного или нескольких молекулярных слоев эмульгатора (моноили полимолекулярные пленки).

3. ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ ЭМУЛЬГАТОРОВ

О поверхностно-активных свойствах эмульгаторов можно судить по величине гидрофильно-липофильного баланса (ГЛБ) .

ГЛБ – это соотношение гидрофильных и гидрофобных групп в молекуле, значение которого выражается определенным числом.

(на практике используется шкала ГЛБ от 0 до 20,0)

Величина

Область применения

Величина

Область применения

пеногасители

эмульгаторы типа М/В

эмульгаторы типа В/М

пенообразователи

смачиватели

солюбилизаторы

Тип образующейся эмульсии зависит от растворимости эмульгатора в той или иной фазе. Дисперсионной средой становится та фаза, в которой эмульгатор преимущественно растворяется.

Для получения

устойчивых эмульсий

применяют:

гидрофильные эмульгаторы

олеофильные эмульгаторы

(с ГЛБ 8-18)

– ланолин,

– производные холестерина,

4. ФАКТОРЫ, ВЛИЯЮЩИЕ НА СТАБИЛЬНОСТЬ

ЭМУЛЬСИЙ

Эмульсии должны обладать:

– физической,

– химической

– микробиологической стабильностью.

Для физической стабильности эмульсии весьма важно:

достаточное количество

определяют

эмульгатора

экспериментально

достаточная степень

получают путем

дисперсности фазы

гомогенизации

Химическая стабильность эмульсий

определяется:

достигается:

стабильностью

– сохранением в соответствующей

лекарственных

упаковке, соблюдением условий

отсутствием

хранения,

– введением антиоксидантов

химических

реакций между

(бутилокситолуола и др.).

ингредиентами

эмульсий

Микробиологическая стабильность эмульсий

определяется

обеспечением микробной чистоты лекарственных и вспомогательных веществ

Понравилась статья? Поделиться с друзьями: