Как определить эффективный радиус атома. Длина связи и эффективные радиусы атомов и ионов

Одной из важнейших характеристик химических элементов, участвующих в образовании химической связи, является размер атома (иона): с его увеличением прочность межатомных связей снижается. Размер атома (иона) принято определять величиной его радиуса или диаметра. Так как атом (ион) не имеет четких границ, то понятие «атомный (ионный) радиус» подразумевает, что 90–98 % электронной плотности атома (иона) заключено в сфере этого радиуса. Знание величин атомных (ионных) радиусов позволяет оценивать межъядерные расстояния в кристаллах (то есть структуру этих кристаллов), так как для многих задач кратчайшие расстояния между ядрами атомов (ионов) можно считать суммой их атомных (ионных) радиусов, хотя такая аддитивность приближенна и выполняется не во всех случаях.

Под атомным радиусом химического элемента (об ионном радиусе см. ниже), участвующего в образовании химической связи, в общем случае договорились понимать половину равновесного межъядерного расстояния между ближайшими атомами в кристаллической решетке элемента. Это понятие, весьма простое, если рассматривать атомы (ионы) в виде жестких шаров, фактически оказывается сложным и часто не однозначным. Атомный (ионный) радиус химического элемента не является неизменной величиной, а изменяется в зависимости от ряда факторов, важнейшими из которых являются тип химической связи

и координационное число.

Если один и тот же атом (ион) в различных кристаллах образует разные типы химической связи, то у него будет несколько радиусов - ковалентный в кристалле с ковалентной связью; ионный в кристалле с ионной связью; металлический в металле; ван-дер-ваальсов в молекулярном кристалле. Влияние типа химической связи можно проследить на следующем примере. В алмазе все четыре химические связи являются ковалентными и образованы sp 3-гибридами, поэтому все четыре соседа данного атома находятся на одном и

том же расстоянии от него (d = 1.54 A˚) и ковалентный радиус углерода в алмазе будет

равен 0.77 A˚ . В кристалле мышьяка расстояние между атомами, связанными ковалентными связями (d 1 = 2.52 A˚), значительно меньше, чем между атомами, связанными силами Ван-дер-Ваальса (d 2 = 3.12 A˚), поэтому у As будет ковалентный радиус, равный 1.26 A˚ , и ван-дер-ваальсов, равный 1.56 A˚ .

Очень резко изменяется атомный (ионный) радиус и при изменении координационного числа (это можно наблюдать при полиморфных превращениях элементов). Чем меньше координационное число, тем меньше степень заполнения пространства атомами (ионами) и меньше межъядерные расстояния. Увеличение же координационного числа всегда сопровождается увеличением межъядерных расстояний.

Из сказанного следует, что атомные (ионные) радиусы разных элементов, участвующих в образовании химической связи, можно сравнивать только тогда, когда они образуют кристаллы, в которых реализуется один и тот же тип химической связи, и у этих элементов в образуемых кристаллах одинаковые координационные числа.

Рассмотрим основные особенности атомных и ионных радиусов более подробно.

Под ковалентными радиусами элементов принято понимать половину равновесного межъядерного расстояния между ближайшими атомами, соединенными ковалентной связью.

Особенностью ковалентных радиусов является их постоянство в разных «ковалентных структурах» с одинаковым координационным числом Z к. Кроме того, ковалентные радиусы, как правило, аддитивно связаны друг с другом, то есть расстояние A–B равно полусумме расстояний A–A и B–B при наличии ковалентных связей и одинаковых координационных чисел во всех трех структурах.

Различают нормальный, тетраэдрический, октаэдрический, квадратичный и линейный ковалентные радиусы.

Нормальный ковалентный радиус атома отвечает случаю, когда атом образует столько ковалентных связей, сколько соответствует его месту в периодической таблице: для углерода - 2, для азота - 3 и т. д. При этом получаются разные значения нормальных радиусов в зависимости от кратности (порядка) связи (единичная связь, двойная, тройная). Если связь образуется при перекрытии гибридных электронных облаков, то говорят о тетраэдрических

(Z к = 4, sp 3-гибридные орбитали), октаэдрических (Z к = 6, d 2sp 3-гибридные орбитали), квадратичных (Z к = 4, dsp 2-гибридные орбитали), линейных (Z к = 2, sp -гибридные орбитали) ковалентных радиусах.

О ковалентных радиусах полезно знать следующее (значения величин ковалентных радиусов для ряда элементов приведены в ).

1. Ковалентные радиусы, в отличие от ионных, нельзя интерпретировать как радиусы атомов, имеющих сферическую форму. Ковалентные радиусы применяются только для вычисления межъядерных расстояний между атомами, объединенными ковалентными связями, и ничего не говорят о расстояниях между атомами того же типа не связанными ковалентно.

2. Величина ковалентного радиуса определяется кратностью ковалентной связи. Тройная связь короче двойной, которая в свою очередь короче единичной, поэтому ковалентный радиус тройной связи меньше, чем ковалентный радиус двойной связи, который меньше

единичного. Следует иметь в виду, что порядок кратности связи не обязательно должен быть целым числом. Он может быть и дробным, если связь носит резонансный характер (молекула бензола, соединение Mg2 Sn, см. ниже). В этом случае ковалентный радиус имеет промежуточное значение между значениями, соответствующими целым порядкам кратности связи.

3. Если связь носит смешанный ковалентно-ионный характер, но с высокой степенью ковалентной составляющей связи, то можно вводить понятие ковалентного радиуса, но нельзя пренебрегать влиянием ионной составляющей связи на его величину. В некоторых случаях это влияние может приводить к значительному уменьшению ковалентного радиуса, иногда до 0.1 A˚ . К сожалению, попытки предсказать величину этого эффекта в различных

случаях пока не увенчались успехом.

4. Величина ковалентного радиуса зависит от типа гибридных орбиталей, которые принимают участие в образовании ковалентной связи.

Ионные радиусы , естественно, не могут быть определены как полусумма расстояний между ядрами ближайших ионов, так как, как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов может несколько отличаться от сферической. Тем не менее для реальных ионных кристаллов под ионным радиусом принято понимать радиус шара, которым аппроксимируется ион.

Ионные радиусы используются для приближенных оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояния между ближайшими катионом и анионом равно сумме их ионных радиусов. Типичная погрешность определения межъядерных расстояний через ионные радиусы в таких кристаллах составляет величину ≈0.01 A˚ .

Существует несколько систем ионных радиусов, отличающихся значениями ионных радиусов индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Первая работа по определению ионных радиусов была проведена В. М. Гольдшмитом в 20-х годах XX века. В ней автор использовал, с одной стороны, межъядерные расстояния в ионных кристаллах, измеренные методами рентгеновского структурного анализа, а, с другой стороны, - значения ионных радиусов F− и O2− , определенные

методом рефрактометрии. Большинство других систем также опирается на определенные дифракционными методами межъядерные расстояния в кристаллах и на некоторые «реперные» значения ионного радиуса конкретного иона. В наиболее широко известной системе

Полинга этим реперным значением является ионный радиус пероксид-иона O2− , равный

1.40 A˚ . Эта величина для O2− хорошо согласуется с теоретическими расчетами. В системе Г. Б. Бокия и Н. В. Белова, считающейся одной из наиболее надежных, ионный радиус O2− принимается равным 1.36 A˚ .

В 70–80-х годах были сделаны попытки прямого определения радиусов ионов путем измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Оказалось, что этот прямой метод приводит к завышенным значениям ионных радиусов катионов и к заниженным значениям ионных радиусов анионов. Кроме того, оказалось, что значения ионных радиусов, определенные прямым способом, нельзя переносить от одного соединения к другому, а отклонения от аддитивности слишком велики. Поэтому такие ионные радиусы, не используются для предсказания межъядерных расстояний.

О ионных радиусов полезно знать следующее (в таблицах, приведенных ниже, даны величины ионных радиусов по Бокию и Белову).

1. Ионный радиус для ионов одного и того же элемента меняется в зависимости от его заряда, а для одного и того же иона зависит от координационного числа. В зависимости от координационного числа различают тетраэдрический и октаэдрический ионные радиусы.

2. Внутри одного вертикального ряда, точнее внутри одной группы, периодической

системы радиусы ионов с одинаковым зарядом возрастают с увеличением атомного номера элемента, поскольку растет число занятых электронами оболочек, а значит и размер иона.

Радиус, A˚

3. Для положительно заряженных ионов атомов из одного периода ионные радиусы быстро уменьшаются с увеличением заряда. Быстрое уменьшение объясняется действием в одну сторону двух основных факторов: сильное притяжение «своих» электронов катионом, заряд которого увеличивается с увеличением атомного номера; увеличение силы взаимодействия между катионом и окружающими его анионами с увеличением заряда катиона.

Радиус, A˚

4. Для отрицательно заряженных ионов атомов из одного периода ионные радиусы увеличиваются с увеличением отрицательного заряда. Два фактора, о которых шла речь в предыдущем пункте, в этом случае действуют в противоположные стороны, причем преобладает первый фактор (увеличение отрицательного заряда аниона сопровождается возрастанием его ионного радиуса), поэтому увеличение ионных радиусов с ростом отрицательного заряда происходит существенно медленнее, чем уменьшение в предыдущем случае.

Радиус, A˚

5. Для одного и того же элемента, то есть при одинаковой исходной электронной конфигурации, радиус катиона меньше, чем аниона. Это обусловлено уменьшением притяжения внешних «добавочных» электронов к ядру аниона и увеличением эффекта экранирования за счет внутренних электронов (у катиона недостаток электронов, а у аниона избыток).

Радиус, A˚

6. Размеры ионов с одинаковым зарядом следуют периодичности таблицы Менделеева. Однако величина ионного радиуса не пропорциональна заряду ядра Z , что обусловлено сильным притяжением электронов ядром. Кроме того, исключение из периодической зависимости представляют лантаноиды и актиноиды, в рядах которых радиусы атомов и ионов с одинаковым зарядом не растут, а уменьшаются с ростом атомного номера (так называемые лантаноидное сжатие и актиноидное сжатие).11

11Лантаноидное сжатие и актиноидное сжатие обусловлены тем, что у лантаноидов и актиноидов добавляющиеся при увеличении атомного номера электроны заполняют внутренние d и f -оболочки с главным квантовым числом меньшим, чем главное квантовое число данного периода. При этом согласно квантовомеханическим расчетам в d и особенно в f состояниях электрон находится гораздо ближе к ядру, чем в s и p состояниях данного периода с большим квантовым числом, поэтому d и f -электроны размещаются во внутренних областях атома, хотя заполнение этих состояний электронами (речь идет об электронных уровнях в энергетическом пространстве) происходит по другому.

Металлические радиусы считаются равными половине кратчайшего расстояния между ядрами атомов в кристаллизующейся структуре элемента-металла. Они зависят от координационного числа. Если принять металлический радиус какого-либо элемента при Z к = 12 за единицу, то при Z к = 8, 6 и 4 металлические радиусы того же элемента будут соответственно равны 0.98; 0.96; 0.88. Металлические радиусы обладают свойством аддитивности. Знание их величин позволяет приближенно предсказывать параметры кристаллических решеток интерметаллических соединений.

Для атомных радиусов металлов характерны следующие особенности (данные о величинах атомных радиусов металлов можно найти в ).

1. Металлические атомные радиусы переходных металлов, как правило, меньше, чем металлические атомные радиусы непереходных металлов, что отражает большую прочность связи в металлах переходных элементов. Эта особенность обусловлена тем, что металлы переходных групп и ближайшие к ним в периодической системе металлы имеют электронные d -оболочки, а электроны в d -состояниях могут принимать участие в образовании химической связи. Упрочнение связи может быть связано отчасти с появлением ковалентной составляющей связи и отчасти с ван-дер-ваальсовым взаимодействием ионных остовов. В кристаллах железа и вольфрама, например, электроны в d -состояниях вносят существенный вклад в энергию связи.

2. В пределах одной вертикальной группы по мере продвижения сверху вниз атомные радиусы металлов возрастают, что обусловлено последовательным увеличением числа электронов (растет число занятых электронами оболочек).

3. В пределах одного периода, точнее начиная с щелочного металла до середины группы переходных металлов, в направлении слева направо атомные металлические радиусы уменьшаются. В той же последовательности возрастает электрический заряд атомного ядра и происходит увеличение числа электронов, находящихся на валентной оболочке. При возрастании числа связывающих электронов, приходящихся на один атом, металлическая связь упрочняется, и вместе с тем из-за увеличения заряда ядра усиливается притяжение остовных (внутренних) электронов ядром, поэтому величина металлического атомного радиуса уменьшается.

4. Переходные металлы VII и VIII групп из одного периода в первом приближении имеют почти одинаковые металлические радиусы. По-видимому, когда речь идет об элементах, имеющих 5 и большее число d -электронов, увеличение заряда ядра и связанные с этим эффекты притяжения остовных электронов, ведущие к уменьшению атомного металлического радиуса, компенсируются эффектами, обусловленными увеличивающимся в атоме (ионе) числом электронов, не участвующих в образовании металлической связи, и ведущими к увеличению металлического радиуса (растет число занятых электронами состояний).

5. Увеличение радиусов (см. п. 2) у переходных элементов, которое имеет место при переходе от четвертого к пятому периоду, не наблюдается у переходных элементов при

переходе от пятого к шестому периоду; металлические атомные радиусы соответствующих (сравнение идет по вертикали) элементов в этих двух последних периодах почти одинаковы. По-видимому, это связано с тем, что у элементов, расположенных между ними, достраивается сравнительно глубоко расположенная f -оболочка, поэтому увеличение заряда ядра и связанные с этим эффекты притяжения оказываются более существенными, чем эффекты, связанные с увеличивающимся числом электронов (лантаноидное сжатие).

Элемент из 4 периода

Радиус, A˚

Элемент из 5 периода

Радиус, A˚

Элемент из 6 периода

Радиус, A˚

6. Обычно металлические радиусы много больше, чем ионные радиусы, однако не столь значительно отличаются от ковалентных радиусов тех же элементов, хотя и все без исключения больше ковалентных. Большая разница в величинах металлических атомных и ионных радиусов одних и тех же элементов объясняется тем, что связь, обязанная своим происхождением почти свободным электронам проводимости, не является сильной (отсюда наблюдаемые относительно большие межатомные расстояния в решетке металлов). Существенно меньшую разницу в величинах металлических и ковалентных радиусов одних и тех же элементов можно объяснить, если рассматривать металлическую связь как некоторую особенную «резонансную» ковалентную связь .

Под ван-дер-ваальсовым радиусом принято понимать половину равновесного межъядерного расстояния между ближайшими атомами, соединенными ван-дер-ваальсовой связью. Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, как следует из определения, ван-дер-ваальсовым атомным радиусом можно считать половину межъядерного расстояния между ближайшими одноименными атомами, связанными ван-дер-ваальсовой связью и принадлежащими разным молекулам (например, в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому вандер-ваальсовы атомные радиусы характеризуют минимально допустимые контакты атомов, принадлежащих разным молекулам. Данные о величинах ван-дер-ваальсовых атомных радиусов для некоторых атомов можно найти в ).

Знание ван-дер-ваальсовых атомных радиусов позволяет определять форму молекул, их упаковку в молекулярных кристаллах. Ван-дер-ваальсовы радиусы много больше всех перечисленных выше радиусов тех же самых элементов, что объясняется слабостью вандер-ваальсовых сил.

ЭФФЕКТИВНЫЙ АТОМНЫЙ РАДИУС - см. Радиус атомный.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ЭФФЕКТИВНЫЙ АТОМНЫЙ РАДИУС" в других словарях:

    Величина в Å, характеризующая размер атомов. Обычно под этим понятием понимались эффективные Р. а., рассчитывающиеся как половина межатомного (межядерного) расстояния в гомоатомных соединениях, т. е. в металлах и неметаллах. Поскольку одни и … Геологическая энциклопедия

    Платина - (Platinum) Металл платина, химические и физические свойства платины Металл платина, химические и физические свойства платины, производство и применение платины Содержание Содержание Раздел 1. Происхождение названия платина. Раздел 2. Положение в… … Энциклопедия инвестора

    Характеристики, позволяющие приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. Атомные радиусы имеют порядок 0,1 нм. Определяются главным образом из данных рентгеновского структурного анализа. * * * АТОМНЫЕ… … Энциклопедический словарь

    Металл - (Metal) Определение металла, физические и химические свойства металлов Определение металла, физические и химические свойства металлов, применение металлов Содержание Содержание Определение Нахождение в природе Свойства Характерные свойства… … Энциклопедия инвестора

    94 Нептуний ← Плутоний → Америций Sm Pu … Википедия

    Запрос «Lithium» перенаправляется сюда; см. также другие значения. Эта статья о химическом элементе. О применении в медицине см. Препараты лития. 3 Гелий ← Литий … Википедия

    55 Ксенон ← Цезий → Барий … Википедия

    Исследования структуры в ва, основаны на изучении углового распределения интенсивности рассеяния исследуемым в вом излучения рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов и мёссбауэровского g излучения. Соотв. различают … Химическая энциклопедия

Деление химической связи на виды носит условный характер.

Для металлической связи, обусловленной притяжением электронов и ионов металлов, характерны некоторые признаки ковалентной, если принять во внимание перекрывание атомных орбиталей атомов. В образовании водородной связи, помимо электростатического взаимодействия, не последнюю роль играет донорно-акцепторный характер взаимодействия.

Резкую границу между ионной и ковалентной полярной связью также провести невозможно. Отнести любую связь металл-неметалл к ионному типу нельзя. Принято считать ионной связь между атомами, разность электроотрицательности которых больше или равна 2 (по шкале Полинга). Например, в оксиде натрия связь Na 2 O (3,44 – 0,93 = 2,51) связь ионная, а в бромиде магния MgBr ковалентная полярная связь (2,96 – 1,31 = 1,65).

В реальных веществах все типы химической связи в чистом виде не встречаются. У большинства соединений тип связи носит промежуточный характер. Это возможно, так как природа химической связи едина – это электростатическое взаимодействие электронов и ядер внутри и между атомами, сближенными на расстояние, когда возникает эффективное перекрывание электронных оболочек.

Поэтому возможен непрерывный переход между всеми предельными случаями: ионной, ковалентной, металлической и остаточной связью. Наглядно переход может быть представлен в виде тетраэдра, в вершинах которого помещены крайние представители, по ребрам переходы между двумя типами, а на гранях и внутри объема тетраэдра – сложные смешанные типы связи.

Эффективные радиусы атомов и ионов

Под эффективными радиусами атомов и ионов понимают радиусы действия сфер атомов или ионов, то есть минимальные расстояния, на которых центры сфер атомов или ионов могут приблизиться к поверхности соседних атомов.

Для определения эффективного радиуса атома или иона структуру кристалла представляют в виде соприкасающихся шаров, расстояние между которыми равно сумме их радиусов. В зависимости от типа химической связи между структурными единицами кристалла различают: металлические радиусы, ионные радиусы, ковалентные радиусы и Ван-дер-ваальсовы радиусы.



Металлические радиусы
Определяется как половина расстояния между соседними атомами, полученного в результате рентгеноструктурного анализа:

Ионные радиусы
Для вычисления радиусов ионов исходят из предположения, что при достаточно большой разнице в размерах катионов и анионов большие по размеру анионы будут соприкасаться, а меньшие по размеру катионы будут располагаться в пустотах между анионами, тогда радиус аниона будет равен: ,

радиус катиона равен: .

Ковалентные радиусы
Ковалентные радиусы определяются как половина межатомного расстояния (длины связи): .

Кроме того, при расчете ковалентного радиуса учитывается способность некоторых элементов образовывать кратные связи, уменьшающие расстояния между атомами и тип гибридизации центрального атома.

Ван-дер-ваальсовы радиусы рассчитываются для атомов, которые связаны друг с другом только силами межмолекулярного взаимодействия. Рассчитываются как половина расстояния между центрами атомов: .

Поскольку методики расчета атомных и ионных радиусов различны, существует большое число таблиц радиусов.

Ионные кристаллы

Объединение катионов и анионов в кристалл осуществляется благодаря кулоновскому притяжению электрических зарядов. В молекуле заряды взаимодействуют с силой . Величина R – расстояние между двумя ионами. Если это расстояние будет бесконечно далеко, то сила равна нулю. На конечном расстоянии сила взаимодействия двух противоположно заряженных ионов отрицательна, что соответствует притяжению, ионы стремятся сблизиться на минимально допустимое расстояние, которое соответствует устойчивому связанному состоянию. Сила взаимодействия двух одинаково заряженных ионов положительна, что соответствует отталкиванию. Ионы стремятся разлететься и на любом расстоянии не образуют устойчивого соединения. Таким образом, энергия образования кристалла должна быть отрицательной. Такое условие реализуется при образовании ионного кристалла.

В ионных кристаллах нет молекул, поэтому не существует границ между структурными единицами. Ионы можно представить как заряженные шары, силовые поля которых равномерно распределяются во всех направлениях в пространстве. Поэтому каждый ион может притягивать к себе ионы противоположного знака в любом направлении, поэтому ионная связь не обладает направленностью.

Взаимодействие двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. В силу этого у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Следовательно, ионная связь не является насыщенной.

Катионы стремятся себя окружить как можно большим числом анионов так, что кулоновское отталкивание ионов одного знака друг от друга компенсируется взаимным кулоновским притяжением катионов и анионов. Поэтому для структур с ионным типом химической связи характерны высокие координационные числа и плотнейшие шаровые упаковки. Симметрия ионных кристаллов обычно высокая.

Кристаллические вещества с ионным типом химической связи характеризуют диэлектрические свойства, хрупкость, средние значения твердости и плотности, низкая тепло- и электропроводность.

Атомным ионам; имеют смысл радиусов сфер, представляющих эти атомы или ионы в молекулах или кристаллах. Атомные радиусы позволяют приближённо оценивать межъядерные (межатомные) расстояния в молекулах и кристаллах.

Электронная плотность изолированного атома быстро убывает по мере увеличения расстояния до ядра, так что радиус атома можно было бы определить как радиус той сферы, в которой сосредоточена основная часть (например, 99%) электронной плотности. Однако для оценки межъядерных расстояний оказалось удобнее интерпретировать атомные радиусы иначе. Это привело к появлению различных определений и систем атомных радиусов.

Ковалентный радиус атома Х определяют как половину длины простой химической связи Х—Х. Так, для галогенов ковалентные радиусы вычисляются из равновесного межъядерного расстояния в молекуле Х 2 , для серы и селена - в молекулах S 8 и Se 8 , для углерода - в кристалле алмаза. Исключение составляет атом водорода, для которого ковалентный атомный радиус принимается равным 30 пм, тогда как половина межъядерного расстояния в молекуле Н 2 равна 37 пм. Для соединений с ковалентным характером связи, как правило, выполняется принцип аддитивности (длина связи Х—Y примерно равна сумме атомных радиусов атомов Х и Y), что позволяет предсказывать длины связей в многоатомных молекулах.

Ионные радиусы определяют как величины, сумма которых для пары ионов (например, Х + и Y -) равна кратчайшему межъядерному расстоянию в соответствующих ионных кристаллах. Существует несколько систем ионных радиусов; системы различаются численными значениями для отдельных ионов в зависимости от того, какой радиус и какого иона принят за основу при вычислении радиусов других ионов. Например, по Полингу - это радиус иона О 2- , принятый равным 140 пм; по Шеннону - радиус того же иона, принятый равным 121 пм. Несмотря на эти различия, разные системы при вычислении межъядерных расстояний в ионных кристаллах приводят к примерно одинаковым результатам.

Металлические радиусы определяют как половину кратчайшего расстояния между атомами в кристаллической решётке металла. Для структур металла, различающихся типом упаковки, эти радиусы различны. Близость значений атомных радиусов различных металлов часто служит указанием на возможность образования этими металлами твёрдых растворов. Аддитивность радиусов позволяет предсказывать параметры кристаллических решёток интерметаллических соединений.

Ван-дер-ваальсовы радиусы определяют как величины, сумма которых равна расстоянию, на которое могут сблизиться два химически не связанных атома разных молекул или разных групп атомов одной и той же молекулы. В среднем ван-дер-ваальсовы радиусы примерно на 80 пм больше, чем ковалентные радиусы. Ван-дер-ваальсовы радиусы используют для интерпретации и предсказания стабильности конформаций молекул и структурного упорядочения молекул в кристаллах.

Лит.: Хаускрофт К., Констебл Э. Современный курс общей химии. М., 2002. Т. 1.

Размеры частиц часто определяют тип кристаллической структуры, важны для понимания протекания многих химических реакций. Размер атомов, ионов, молекул определяется валентными электронами. Основа понимания этого вопроса – закономерности изменения орбитальных радиусов – изложены в подразд. 2.4. Атом не имеет границ и его размер – величина условная. Тем не менее можно характеризовать размер свободного атома орбитальным радиусом. Но практический интерес представляют обычно атомы и ионы в составе вещества (в молекуле, полимере, жидкости или твердом веществе), а не свободные. Поскольку состояния свободного и связанного атома существенно отличаются (и прежде всего их энергия), то должны отличаться и размеры.

Для связанных атомов тоже можно ввести характеризующие их размер величины. Хотя электронные облака связанных атомов могут существенно отличаться от сферических, размеры атомов принято характеризовать эффективными (кажущимися)радиусами .

Размеры атомов одного и того же элемента существенно зависят от того, в составе какого химического соединения, с каким типом связи находится атом. Например, для водорода половина межатомного расстояния в молекуле Н 2 равна 0,74/2 = 0,37 Å, а в металлическом водороде получается значение радиуса 0,46 Å. Поэтому выделяют ковалентные, ионные, металлические и вандерваальсовые радиусы . Как правило, в концепциях эффективных радиусов межатомные расстояния (точнее, межъядерные) считают суммой радиусов двух соседних атомов, принимая атомы за несжимаемые шары. При наличии надёжных и точных экспериментальных данных о межатомных расстояниях (а такие данные уже в течение длительного времени доступны и для молекул, и для кристаллов с точностью до тысячных долей ангстрема) для определения радиуса каждого атома остаётся одна проблема – как распределить межатомное расстояние между двумя атомами. Понятно, что эта проблема может быть решена однозначно только при введении дополнительных независимых данных или предположений.

Конец работы -

Эта тема принадлежит разделу:

Свойства химической связи

На сайте сайт читайте: "свойства химической связи"..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ковалентные радиусы
Наиболее очевидна ситуация с ковалентными радиусами для атомов, которые образуют неполярные двухатомные молекулы. В таких случаях ковалентный радиус составляет ровно половину межатомного расстояния

Ионные радиусы
Поскольку при н. у. затруднительно наблюдать молекулы с ионными связями и в то же время известно большое количество соединений, образующих ионные кристаллы, то, когда речь идёт об ионных радиусах,

Металлические радиусы
Само по себе определение металлических радиусов не представляет проблем – достаточно измерить межъядерное расстояние в соответствующем металле и поделить пополам. В табл. 20 приведены некоторые мет

Вандерваальсовые радиусы
Вандерваальсовые радиусы можно определить, если измерить в кристалле расстояния между атомами, когда не существует никакой химической связи между ними. Иначе говоря, атомы принадлежат разным молеку

Вопросы для самопроверки
1. Что такое орбитальные и эффективные радиусы? 2. В чем отличие между радиусом дробинки и атома или иона? 3. В каких случаях ковалентный радиус равен половине длины

Эффективные заряды атомов
При образовании химической связи происходит перераспределение электронной плотности, и в случае полярной связи атомы оказываются электрически заряженными. Эти заряды называют эффективными. Они хара

Эффективные заряды в некоторых ионных кристаллах
Вещество CsF CsCl NaF NaCl LiF LiCl LiI DЭО 3,3

Эффективные заряды атомов в оксидах (по Н. С. Ахметову)
Оксид Na2O MgO Al2O3 SiO2 P2O5 SO

Вопросы для самопроверки
1. Что такое эффективный заряд атома? 2. Может ли эффективный заряд превышать (по модулю) степень окисления атома? 3. Что такое степень ионности связи? 4. К

Валентность
В общем валентность характеризует способность атомов элемента образовывать соединения, содержащие определённый состав (определённые соотношения количества разных элементов в соединении). Часто в ли

Вопросы для самопроверки
1. Дайте определения понятиям: степень окисления; ковалентность; координационное число; стерическое число. 2. Определите ковалентность, степень окисления и КЧ для: H2S; H

Энергия связи
Величина энергии – важнейшая характеристика связи, определяющая устойчивость веществ к нагреву, освещению, механическим воздействиям, реакциям с другими веществами[†]. Существуют различные методы э

Энергии связи двухатомных молекул в газе (Н. Н. Павлов)
Молекула H2 Li2 Na2 K2 F2 Cl2

Вопросы для самопроверки
1. Предскажите изменение энергии связи С–N в ряду Н3СNН2, Н2СNН, НСNН. 2. Предскажите изменение энергии связи в ряду О2, S2, Se2

Химическая связь и Периодическая система элементов
Рассмотрим закономерности строения и свойств некоторых простых веществ и простейших соединений, определяемые электронным строением их атомов. Атомы благородных газов (группа VIIIA) имеют полностью

Изменение межатомных расстояний для простых веществ группы VIA
Вещество Расстояние между атомами, Å внутри молекул между молекулами разность S

Дополнительный
3. Общая химия / под ред. Е. М. Соколовской. М.: Изд-во МГУ, 1989. 4. Угай Я. О. Общая химия. М.: Высш. шк., 1984. 5. Он же. Общая и неорганическая химия. М..

Понравилась статья? Поделиться с друзьями: