Графики с модулями примеры. Как решать уравнения с модулем: основные правила

Урок 5. Преобразования графиков с модулями (факультативное занятие)

09.07.2015 11148 0

Цель: освоить основные навыки преобразования графиков с модулями.

I. Сообщение темы и цели урока

II . Повторение и закрепление пройденного материала

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (письменный опрос).

Вариант 1

f (х), построить график функции у = f (-х) + 2?

2. Постройте график функции:

Вариант 2

1. Как, зная график функции у = f (х), построить график функции у = - f (х) - 1?

2. Постройте график функции:

III. Изучение нового материала

Из материала предыдущего урока видно, что способы преобразования графиков чрезвычайно полезны при их построении. Поэтому рассмотрим также основные способы преобразования графиков, содержащих модули. Эти способы являются универсальными и пригодны для любых функций. Для простоты построения будем рассматривать кусочно-линейную функцию f (х) с областью определения D (f ), график которой представлен на рисунке. Рассмотрим три стандартных преобразования графиков с модулями.

1) Построение графика функции у = | f (x )|

f /(x ), если Дх)>0,

По определению модуля получим: Это означает, что для построения графика функции у = | f (x )| надо сохранить часть графика функции у = f (x ), для которой у ≥ 0. Ту часть графика функции у = f (х), для которой у < 0, надо симметрично отразить вверх относительно оси абсцисс.

2) Построение графика функции у = f (| x |)

Г/О), если Дх)>0,

Раскроем модуль и получим: Поэтому для построения графика функции у = f (| x |) надо сохранить часть графика функции у = f (х), для которой х ≥ 0. Кроме того, эту часть надо симметрично отразить влево относительно оси ординат.

3) Построение графика уравнения |у| = f (x )

По определению модуля имеем, что при f (х) ≥ 0 надо построить графики двух функций: у = f (х) и у = - f (х). Это означает, что для построения графика уравнения |у| = f (х) надо сохранить часть графика функции у = f (х), для которой у ≥ 0. Кроме того, эту часть надо симметрично отразить вниз относительно оси абсцисс.

Заметим, что зависимость |у| = f (х) не задает функцию, т. е. при х (-2,6; 1,4) каждому значению х соответствуют два значения у. Поэтому на рисунке представлен именно график уравнения |у| = f (х).

Используем рассмотренные способы преобразования графиков с модулями для построения графиков более сложных функций и уравнений.

Пример 1

Построим график функции

Выделим в этой функции целую часть Такой график получается при смещении графика функции у = -1/ x на 2 единицы вправо и на 1 единицу вниз. Графиком данной функции является гипербола.

Пример 2

Построим график функции

В соответствии со способом 1 сохраним часть графика из примера 1, для которой у ≥ 0. Ту часть графика, для которой у < 0, симметрично отразим вверх относительно оси абсцисс.

Пример 3

Построим график функции

Используя способ 2, сохраним часть графика из примера 1, для которой х ≥ 0. Эту сохраненную часть, кроме того, зеркально отразим влево относительно оси ординат. Получим график функции, симметричный относительно оси ординат.

Пример 4

Построим график уравнения

В соответствии со способом 3 сохраним часть графика из примера 1, для которой у ≥ 0. Кроме того, эту сохраненную часть симметрично отразим вниз относительно оси абсцисс. Получим график данного уравнения.

Разумеется, рассмотренные способы преобразования графиков можно использовать и совместно.

Пример 5

Построим график функции

Используем график функции построенный в примере 3. Чтобы построить данный график, сохраним те части графика 3, для которых у ≥ 0. Те части графика 3, для которых у < 0, симметрично отразим вверх относительно оси абсцисс.

В тех случаях, когда модули входят в зависимость иным образом (чем в способах 1-3), необходимо эти модули раскрыть.

Пример 6

Построим график функции

Выражения х - 1 и x + 2, входящие под знаки модулей, меняют свои знаки в точках х = 1 и x = -2 соответственно. Отметим эти точки на координатной прямой. Они разбивают ее на три интервала. Используя определения модуля, раскроем модули в каждом промежутке.

Получим:

1. При

2. При

3. При

Построим графики этих функций, учитывая интервалы для переменной х, в которых раскрывались знаки модуля. Получим ломаную прямую.

Достаточно часто при построении графиков уравнений с модулями для их раскрытия используют координатную плоскость. Поясним это следующим примером.

Пример 7

Построим график уравнения

Выражение у - х меняет свой знак на прямой у = х. Построим эту прямую - биссектрису первого и третьего координатных углов. Эта прямая разбивает точки плоскости на две области: 1 - точки, расположенные над прямой у – х; 2 - точки, расположенные под этой прямой. Раскроем модуль в таких областях. В области 1 возьмем, например, контрольную точку (0; 5). Видим, что для этой точки выражение у - х > 0. Раскрывая модуль, получим: у - х + у + х = 4 или y = 2. Строим такую прямую в пределах первой области. Очевидно, в области 2 выражение у - х < 0. Раскрывая модуль, имеем: -(у - х) + у + х = 4 или х = 2. Строим эту прямую в пределах области 2. Получаем график данного уравнения.

3. Постройте график дробно-линейной функции и уравнения:

4. Постройте график функции, уравнения, неравенства:

VIII. Подведение итогов урока

Модуль — одна из тех вещей, о которых вроде-бы все слышали, но в действительности никто нормально не понимает. Поэтому сегодня будет большой урок, посвящённый решению уравнений с модулями.

Сразу скажу: урок будет несложный. И вообще модули — вообще тема относительно несложная. «Да конечно, несложная! У меня от неё мозг разрывается!» — скажут многие ученики, но все эти разрывы мозга происходят из-за того, что у большинства людей в голове не знания, а какая-то хрень. И цель этого урока — превратить хрень в знания.:)

Немного теории

Итак, поехали. Начнём с самого важного: что такое модуль? Напомню, что модуль числа — это просто то же самое число, но взятое без знака «минус». Т.е., например, $\left| -5 \right|=5$. Или $\left| -129,5 \right|=129,5$.

Вот так всё просто? Да, просто. А чему тогда равен модуль положительного числа? Тут ещё проще: модуль положительного числа равен самому этому числу: $\left| 5 \right|=5$; $\left| 129,5 \right|=129,5$ и т.д.

Получается любопытная вещь: разные числа могут иметь один тот же модуль. Например: $\left| -5 \right|=\left| 5 \right|=5$; $\left| -129,5 \right|=\left| 129,5 \right|=129,5$. Нетрудно заметить, что это за числа, у которых модули одинаковые: эти числа противоположны. Таким образом, отметим для себя, что модули противоположных чисел равны:

\[\left| -a \right|=\left| a \right|\]

Ещё один важный факт: модуль никогда не бывает отрицательным . Какое бы число мы ни взяли — хоть положительное, хоть отрицательное — его модуль всегда оказывается положительным (или в крайнем случае нулём). Именно поэтому модуль часто называют абсолютной величиной числа.

Кроме того, если объединить определение модуля для положительного и отрицательного числа, то получим глобальное определение модуля для всех чисел. А именно: модуль числа равен самому этому числу, если число положительное (или ноль), либо равен противоположному числу, если число отрицательное. Можно записать это в виде формулы:

Ещё есть модуль нуля, но он всегда равен нулю. Кроме того, ноль — единственное число, которое не имеет противоположного.

Таким образом, если рассмотреть функцию $y=\left| x \right|$ и попробовать нарисовать её график, то получится вот такая «галка»:

График модуля и пример решения уравнения

Из этой картинки сразу видно, что $\left| -m \right|=\left| m \right|$, а график модуля никогда не опускается ниже оси абсцисс. Но это ещё не всё: красной линией отмечена прямая $y=a$, которая при положительных $a$ даёт нам сразу два корня: ${{x}_{1}}$ и ${{x}_{2}}$, но об этом мы поговорим позже.:)

Помимо чисто алгебраического определения, есть геометрическое. Допустим, есть две точки на числовой прямой: ${{x}_{1}}$ и ${{x}_{2}}$. В этом случае выражение $\left| {{x}_{1}}-{{x}_{2}} \right|$ — это просто расстояние между указанными точками. Или, если угодно, длина отрезка, соединяющего эти точки:

Модуль — это расстояние между точками на числовой прямой

Из этого определения также следует, что модуль всегда неотрицателен. Но хватит определений и теории — перейдём к настоящим уравнениям.:)

Основная формула

Ну хорошо, с определением разобрались. Но легче-то от этого не стало. Как решать уравнения, содержащие этот самый модуль?

Спокойствие, только спокойствие. Начнём с самых простых вещей. Рассмотрим что-нибудь типа такого:

\[\left| x \right|=3\]

Итак, модуль$x$ равен 3. Чему может быть равен $x$? Ну, судя по определению, нас вполне устроит $x=3$. Действительно:

\[\left| 3 \right|=3\]

А есть ли другие числа? Кэп как бы намекает, что есть. Например, $x=-3$ — для него тоже $\left| -3 \right|=3$, т.е. требуемое равенство выполняется.

Так может, если поискать, подумать, мы найдём ещё числа? А вот обломитесь: больше чисел нет. Уравнение $\left| x \right|=3$ имеет лишь два корня: $x=3$ и $x=-3$.

Теперь немного усложним задачу. Пусть вместо переменной $x$ под знаком модуля тусуется функция $f\left(x \right)$, а справа вместо тройки поставим произвольное число $a$. Получим уравнение:

\[\left| f\left(x \right) \right|=a\]

Ну и как такое решать? Напомню: $f\left(x \right)$ — произвольная функция, $a$ — любое число. Т.е. вообще любое! Например:

\[\left| 2x+1 \right|=5\]

\[\left| 10x-5 \right|=-65\]

Обратим внимание на второе уравнение. Про него сразу можно сказать: корней у него нет. Почему? Всё правильно: потому что в нём требуется, чтобы модуль был равен отрицательному числу, чего никогда не бывает, поскольку мы уже знаем, что модуль — число всегда положительное или в крайнем случае ноль.

А вот с первым уравнением всё веселее. Тут два варианта: либо под знаком модуля стоит положительное выражение, и тогда$\left| 2x+1 \right|=2x+1$, либо это выражение всё-таки отрицательное, и тогда $\left| 2x+1 \right|=-\left(2x+1 \right)=-2x-1$. В первом случае наше уравнение перепишется так:

\[\left| 2x+1 \right|=5\Rightarrow 2x+1=5\]

И внезапно получается, что подмодульное выражение $2x+1$ действительно положительно — оно равно числу 5. Т.е. мы можем спокойно решать это уравнение — полученный корень будет кусочком ответа:

Особо недоверчивые могут попробовать подставить найденный корень в исходное уравнение и убедиться, что действительно под модулем будет положительное число.

Теперь разберём случай отрицательного подмодульного выражения:

\[\left\{ \begin{align}& \left| 2x+1 \right|=5 \\& 2x+1 \lt 0 \\\end{align} \right.\Rightarrow -2x-1=5\Rightarrow 2x+1=-5\]

Опа! Снова всё чётко: мы предположили, что $2x+1 \lt 0$, и в результате получили, что $2x+1=-5$ — действительно, это выражение меньше нуля. Решаем полученное уравнение, при этом уже точно зная, что найденный корень нас устроит:

Итого мы вновь получили два ответа: $x=2$ и $x=3$. Да, объём вычислений оказался малость побольше, чем в совсем уж простом уравнении $\left| x \right|=3$, но принципиально ничего не изменилось. Так может, существует какой-то универсальный алгоритм?

Да, такой алгоритм существует. И сейчас мы его разберём.

Избавление от знака модуля

Пусть нам дано уравнение $\left| f\left(x \right) \right|=a$, причём $a\ge 0$ (иначе, как мы уже знаем, корней нет). Тогда можно избавиться от знака модуля по следующему правилу:

\[\left| f\left(x \right) \right|=a\Rightarrow f\left(x \right)=\pm a\]

Таким образом, наше уравнение с модулем распадается на два, но уже без модуля. Вот и вся технология! Попробуем решить парочку уравнений. Начнём вот с такого

\[\left| 5x+4 \right|=10\Rightarrow 5x+4=\pm 10\]

Отдельно рассмотрим, когда справа стоит десятка с плюсом, и отдельно — когда с минусом. Имеем:

\[\begin{align}& 5x+4=10\Rightarrow 5x=6\Rightarrow x=\frac{6}{5}=1,2; \\& 5x+4=-10\Rightarrow 5x=-14\Rightarrow x=-\frac{14}{5}=-2,8. \\\end{align}\]

Вот и всё! Получили два корня: $x=1,2$ и $x=-2,8$. Всё решение заняло буквально две строчки.

Ок, не вопрос, давайте рассмотрим что-нибудь чуть посерьёзнее:

\[\left| 7-5x \right|=13\]

Опять раскрываем модуль с плюсом и минусом:

\[\begin{align}& 7-5x=13\Rightarrow -5x=6\Rightarrow x=-\frac{6}{5}=-1,2; \\& 7-5x=-13\Rightarrow -5x=-20\Rightarrow x=4. \\\end{align}\]

Опять пара строчек — и ответ готов! Как я и говорил, в модулях нет ничего сложного. Нужно лишь запомнить несколько правил. Поэтому идём дальше и приступаем с действительно более сложным задачам.

Случай переменной правой части

А теперь рассмотрим вот такое уравнение:

\[\left| 3x-2 \right|=2x\]

Это уравнение принципиально отличается от всех предыдущих. Чем? А тем, что справа от знака равенства стоит выражение $2x$ — и мы не можем заранее знать, положительное оно или отрицательное.

Как быть в таком случае? Во-первых, надо раз и навсегда понять, что если правая часть уравнения окажется отрицательной, то уравнение не будет иметь корней — мы уже знаем, что модуль не может быть равен отрицательному числу.

А во-вторых, если права часть всё-таки положительна (или равна нулю), то можно действовать точно так же, как раньше: просто раскрыть модуль отдельно со знаком «плюс» и отдельно — со знаком «минус».

Таким образом, сформулируем правило для произвольных функций $f\left(x \right)$ и $g\left(x \right)$ :

\[\left| f\left(x \right) \right|=g\left(x \right)\Rightarrow \left\{ \begin{align}& f\left(x \right)=\pm g\left(x \right), \\& g\left(x \right)\ge 0. \\\end{align} \right.\]

Применительно к нашему уравнению получим:

\[\left| 3x-2 \right|=2x\Rightarrow \left\{ \begin{align}& 3x-2=\pm 2x, \\& 2x\ge 0. \\\end{align} \right.\]

Ну, с требованием $2x\ge 0$ мы как-нибудь справимся. В конце концов, можно тупо подставить корни, которые мы получим из первого уравнения, и проверить: выполняется неравенство или нет.

Поэтому решим-ка само уравнение:

\[\begin{align}& 3x-2=2\Rightarrow 3x=4\Rightarrow x=\frac{4}{3}; \\& 3x-2=-2\Rightarrow 3x=0\Rightarrow x=0. \\\end{align}\]

Ну и какой их этих двух корней удовлетворяет требованию $2x\ge 0$? Да оба! Поэтому в ответ пойдут два числа: $x={4}/{3}\;$ и $x=0$. Вот и всё решение.:)

Подозреваю, что кто-то из учеников уже начал скучать? Что ж, рассмотрим ещё более сложное уравнение:

\[\left| {{x}^{3}}-3{{x}^{2}}+x \right|=x-{{x}^{3}}\]

Хоть оно и выглядит злобно, по факту это всё то же самое уравнение вида «модуль равен функции»:

\[\left| f\left(x \right) \right|=g\left(x \right)\]

И решается оно точно так же:

\[\left| {{x}^{3}}-3{{x}^{2}}+x \right|=x-{{x}^{3}}\Rightarrow \left\{ \begin{align}& {{x}^{3}}-3{{x}^{2}}+x=\pm \left(x-{{x}^{3}} \right), \\& x-{{x}^{3}}\ge 0. \\\end{align} \right.\]

С неравенством мы потом разберёмся — оно какое-то уж слишком злобное (на самом деле простое, но мы его решать не будем). Пока лучше займёмся полученными уравнениями. Рассмотрим первый случай — это когда модуль раскрывается со знаком «плюс»:

\[{{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}\]

Ну, тут и ежу понятно, что нужно всё собрать слева, привести подобные и посмотреть, что получится. А получится вот что:

\[\begin{align}& {{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}; \\& 2{{x}^{3}}-3{{x}^{2}}=0; \\\end{align}\]

Выносим общий множитель ${{x}^{2}}$ за скобку и получаем очень простое уравнение:

\[{{x}^{2}}\left(2x-3 \right)=0\Rightarrow \left[ \begin{align}& {{x}^{2}}=0 \\& 2x-3=0 \\\end{align} \right.\]

\[{{x}_{1}}=0;\quad {{x}_{2}}=\frac{3}{2}=1,5.\]

Тут мы воспользовались важным свойством произведения, ради которого мы и раскладывали исходный многочлен на множители: произведение равно нулю, когда хотя бы один из множителей равен нулю.

Теперь точно так же разберёмся со вторым уравнением, которое получается при раскрытии модуля со знаком «минус»:

\[\begin{align}& {{x}^{3}}-3{{x}^{2}}+x=-\left(x-{{x}^{3}} \right); \\& {{x}^{3}}-3{{x}^{2}}+x=-x+{{x}^{3}}; \\& -3{{x}^{2}}+2x=0; \\& x\left(-3x+2 \right)=0. \\\end{align}\]

Опять то же самое: произведение равно нулю, когда равен нулю хотя бы один из множителей. Имеем:

\[\left[ \begin{align}& x=0 \\& -3x+2=0 \\\end{align} \right.\]

Ну вот мы получили три корня: $x=0$, $x=1,5$ и $x={2}/{3}\;$. Ну и что из этого набора пойдёт в окончательный ответ? Для этого вспомним, что у нас есть дополнительное ограничение в виде неравенства:

Как учесть это требование? Да просто подставим найденные корни и проверим: выполняется неравенство при этих $x$ или нет. Имеем:

\[\begin{align}& x=0\Rightarrow x-{{x}^{3}}=0-0=0\ge 0; \\& x=1,5\Rightarrow x-{{x}^{3}}=1,5-{{1,5}^{3}} \lt 0; \\& x=\frac{2}{3}\Rightarrow x-{{x}^{3}}=\frac{2}{3}-\frac{8}{27}=\frac{10}{27}\ge 0; \\\end{align}\]

Таким образом, корень $x=1,5$ нас не устраивает. И в ответ пойдут лишь два корня:

\[{{x}_{1}}=0;\quad {{x}_{2}}=\frac{2}{3}.\]

Как видите, даже в этом случае ничего сложного не было — уравнения с модулями всегда решаются по алгоритму. Нужно лишь хорошо разбираться в многочленах и неравенствах. Поэтому переходим к более сложным задачам — там уже будет не один, а два модуля.

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $\left| f\left(x \right) \right|=g\left(x \right)$ или даже более простому $\left| f\left(x \right) \right|=a$.

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

\[\left| f\left(x \right) \right|=\left| g\left(x \right) \right|\]

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

\[\left| f\left(x \right) \right|=\left| g\left(x \right) \right|\Rightarrow f\left(x \right)=\pm g\left(x \right)\]

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\]

Элементарно, Ватсон! Раскрываем модули:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\Rightarrow 2x+3=\pm \left(2x-7 \right)\]

Рассмотрим отдельно каждый случай:

\[\begin{align}& 2x+3=2x-7\Rightarrow 3=-7\Rightarrow \emptyset ; \\& 2x+3=-\left(2x-7 \right)\Rightarrow 2x+3=-2x+7. \\\end{align}\]

В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: $x=1$.

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

\[\left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|\]

Опять у нас уравнение вида $\left| f\left(x \right) \right|=\left| g\left(x \right) \right|$. Поэтому сразу переписываем его, раскрывая знак модуля:

\[{{x}^{2}}-3x+2=\pm \left(x-1 \right)\]

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

\[\left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|\Rightarrow \left| {{x}^{2}}-3x+2 \right|=\left| x-1 \right|\]

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

\[\begin{align}& {{x}^{2}}-3x+2=x-1\Rightarrow {{x}^{2}}-4x+3=0; \\& {{x}^{2}}-3x+2=-\left(x-1 \right)\Rightarrow {{x}^{2}}-2x+1=0. \\\end{align}\]

Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:

\[{{x}^{2}}-2x+1={{\left(x-1 \right)}^{2}}\]

Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

\[{{x}_{1}}=3;\quad {{x}_{2}}=1.\]

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание . Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

\[\begin{align}& \left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|; \\& \left| x-1 \right|=\left| \left(x-1 \right)\left(x-2 \right) \right|. \\\end{align}\]

Одно из свойств модуля: $\left| a\cdot b \right|=\left| a \right|\cdot \left| b \right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

\[\left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|\]

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

\[\begin{align}& \left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|; \\& \left| x-1 \right|-\left| x-1 \right|\cdot \left| x-2 \right|=0; \\& \left| x-1 \right|\cdot \left(1-\left| x-2 \right| \right)=0. \\\end{align}\]

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

\[\left[ \begin{align}& \left| x-1 \right|=0, \\& \left| x-2 \right|=1. \\\end{align} \right.\]

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Итак, уравнение:

\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\]

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

\[\begin{align}& 5+7=12 \gt 0; \\& 0,004+0,0001=0,0041 \gt 0; \\& 5+0=5 \gt 0. \\\end{align}\]

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\Rightarrow \left\{ \begin{align}& \left| x-{{x}^{3}} \right|=0, \\& \left| {{x}^{2}}+x-2 \right|=0. \\\end{align} \right.\]

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

\[{{x}^{2}}+x-2=0\Rightarrow \left(x+2 \right)\left(x-1 \right)=0\Rightarrow \left[ \begin{align}& x=-2 \\& x=1 \\\end{align} \right.\]

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.

Метод расщепления

Что ж, мы уже рассмотрели кучу задач и изучили множество приёмов. Думаете, на этом всё? А вот и нет! Сейчас мы рассмотрим заключительный приём — и одновременно самый важный. Речь пойдёт о расщеплении уравнений с модулем. О чём вообще пойдёт речь? Давайте вернёмся немного назад и рассмотрим какое-нибудь простое уравнение. Например, это:

\[\left| 3x-5 \right|=5-3x\]

В принципе, мы уже знаем, как решать такое уравнение, потому что это стандартная конструкция вида $\left| f\left(x \right) \right|=g\left(x \right)$. Но попробуем взглянуть на это уравнение немного под другим углом. Точнее, рассмотрим выражение, стоящее под знаком модуля. Напомню, что модуль любого числа может быть равен самому числу, а может быть противоположен этому числу:

\[\left| a \right|=\left\{ \begin{align}& a,\quad a\ge 0, \\& -a,\quad a \lt 0. \\\end{align} \right.\]

Собственно, в этой неоднозначности и состоит вся проблема: поскольку число под модулем меняется (оно зависит от переменной), нам неясно — положительное оно или отрицательное.

Но что если изначально потребовать, чтобы это число было положительным? Например, потребуем, чтобы $3x-5 \gt 0$ — в этом случае мы гарантированно получим положительное число под знаком модуля, и от этого самого модуля можно полностью избавиться:

Таким образом, наше уравнение превратится в линейное, которое легко решается:

Правда, все эти размышления имеют смысл только при условии $3x-5 \gt 0$ — мы сами ввели это требование, дабы однозначно раскрыть модуль. Поэтому давайте подставим найденный $x=\frac{5}{3}$ в это условие и проверим:

Получается, что при указанном значении $x$ наше требование не выполняется, т.к. выражение оказалось равно нулю, а нам нужно, чтобы оно было строго больше нуля. Печалька.:(

Но ничего страшного! Ведь есть ещё вариант $3x-5 \lt 0$. Более того: есть ещё и случай $3x-5=0$ — это тоже нужно рассмотреть, иначе решение будет неполным. Итак, рассмотрим случай $3x-5 \lt 0$:

Очевидно, что в модуль раскроется со знаком «минус». Но тогда возникает странная ситуация: и слева, и справа в исходном уравнении будет торчать одно и то же выражение:

Интересно, при каких таких $x$ выражение $5-3x$ будет равно выражению $5-3x$? От таких уравнений даже Капитан очевидность подавился бы слюной, но мы-то знаем: это уравнение является тождеством, т.е. оно верно при любых значениях переменной!

А это значит, что нас устроят любые $x$. Вместе с тем у нас есть ограничение:

Другими словами, ответом будет не какое-то отдельное число, а целый интервал:

Наконец, осталось рассмотреть ещё один случай: $3x-5=0$. Тут всё просто: под модулем будет ноль, а модуль нуля тоже равен нулю (это прямо следует из определения):

Но тогда исходное уравнение $\left| 3x-5 \right|=5-3x$ перепишется следующим образом:

Этот корень мы уже получали выше, когда рассматривали случай $3x-5 \gt 0$. Более того, это корень является решением уравнения $3x-5=0$ — это ограничение, которое мы сами же и ввели, чтобы обнулить модуль.:)

Таким образом, помимо интервала нас устроит ещё и число, лежащее на самом конце этого интервала:


Объединение корней в уравнениях с модулем

Итого окончательный ответ: $x\in \left(-\infty ;\frac{5}{3} \right]$. Не очень-то привычно видеть такую хрень в ответе к довольно простому (по сути — линейному) уравнению с модулем, правда? Что ж, привыкайте: в том и состоит сложность модуля, что ответы в таких уравнениях могут оказаться совершенно непредсказуемыми.

Куда важнее другое: мы только что разобрали универсальный алгоритм решения уравнения с модуляем! И состоит этот алгоритм из следующих шагов:

  1. Приравнять каждый модуль, имеющийся в уравнении, к нулю. Получим несколько уравнений;
  2. Решить все эти уравнения и отметить корни на числовой прямой. В результате прямая разобьётся на несколько интервалов, на каждом из которых все модули однозначно раскрываются;
  3. Решить исходное уравнение для каждого интервала и объединить полученные ответы.

Вот и всё! Остаётся лишь один вопрос: куда девать сами корни, полученные на 1-м шаге? Допустим, у нас получилось два корня: $x=1$ и $x=5$. Они разобьют числовую прямую на 3 куска:

Разбиение числовой оси на интервалы с помощью точек

Ну и какие тут интервалы? Понятно, что их три:

  1. Самый левый: $x \lt 1$ — сама единица в интервал не входит;
  2. Центральный: $1\le x \lt 5$ — вот тут единица в интервал входит, однако не входит пятёрка;
  3. Самый правый: $x\ge 5$ — пятёрка входит только сюда!

Я думаю, вы уже поняли закономерность. Каждый интервал включает в себя левый конец и не включает правый.

На первый взгляд, такая запись может показаться неудобной, нелогичной и вообще какой-то бредовой. Но поверьте: после небольшой тренировки вы обнаружите, что именно такой подход наиболее надёжен и при этом не мешает однозначно раскрывать модули. Лучше уж использовать такую схему, чем каждый раз думать: отдавать левый/правый конец в текущий интервал или «перекидывать» его в следующий.

На этом урок заканчивается. Скачивайте задачи для самостоятельного решения, тренируйтесь, сравнивайте с ответами — и увидимся в следующем уроке, который будет посвящён неравенствам с модулями.:)

Функция вида y=|x|.
График функции на промежутке – с графиком функции у=-х.

Рассмотрим сначала простейший случай – функцию y=|x|. По определению модуля, имеем:

Таким образом, для х≥0 функция y=|x| совпадает с функцией у=х, а для х Пользуясь этим разъяснением, легко построить график функции y=|x|(рис.1).

Легко заметить, что этот график является объединением той части графика функции у = х, которая лежит не ниже оси OX и линии, полученной зеркальным отражением относительно оси OX, той его части, которая лежит ниже оси OX.
Этот способ пригоден и для построения графика функции y=|kx+b|.
Если график функции y=kx+b изображен на рис.2, то графиком функции y=|kx+b| является линия, изображенная на рис.3.

Пример 1. Построить график функции y=||1-x 2 |-3|.
Построим график функции y=1-x 2 и применим к нему операцию «модуль» (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX).

Выполним сдвиг графика вниз на 3.

Применим операцию «модуль» и получим окончательный график функции y=||1-x 2 |-3|


Пример 2. Построить график функции y=||x 2 -2x|-3|.
В результате преобразования получаем y=|x 2 -2x|=|(x-1) 2 -1|. Построим график функции y=(x-1) 2 -1: строим параболу y=x 2 и выполняем сдвиг вправо на 1 и вниз на 1.

Применим к нему операцию «модуль» (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX).

Выполним сдвиг графика вниз на 3 и применим операцию «модуль», в результате получим окончательный график.


Пример 3. Построить график функции .
Чтобы раскрыть модуль, надо рассмотреть два случая:
1)x>0, тогда модуль раскроется со знаком "+" =
2)x =

Построим график для первого случая.

Отбросим часть графика, где x

Построим график для второго случая и аналогично отбросим часть, где x>0, в итоге получим.

Соединим два графика и получим окончательный.


Пример 4. Построить график функции .
Построим сначала график функции .Для этого удобно выделить целую часть, получим . Строя по таблице значений, получаем график.

Применим операцию модуль (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX). Получаем окончательный график

Пример 5. Построить график функции y=|-x 2 +6x-8|. Cначала упростим функцию до y=1-(x-3) 2 и построим её график

Теперь применим операцию «модуль» и отразим часть графика ниже оси OX, относительно оси OX


Пример 6. Построить график функции y=-x 2 +6|x|-8. Также упростим функцию до y=1-(x-3) 2 и построим её график

Теперь применим операцию «модуль» и отразим часть графика правее оси оY, в левую часть


Пример 7. Построить график функции . Построим график функции

Построим график функции

Выполним параллельный перенос на 3 единичных отрезка вправо и 2 вверх. График примет вид:

Применим операцию «модуль» и отразим часть графика правее прямой x=3 в левую полуплоскость.

Графики прямой, параболы, гиперболы, с модулем

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.

Графики - самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:

Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую.

Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1

Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:

А если теперь добавить модуль y = |2x − 1|.

Модуль - это всегда положительное значение , получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).

Получается такая зеленая "галочка".

Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Здесь отражаем относительно оси «y» . Такая же галочка, только теперь через другую ось.

Смертельный номер: y = |2|x| − 1|.

Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть.

В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны!


А после этого отражаем относительно оси «y» то, что мы получили справа налево:


Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x₁ = 1 и x ₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А теперь сразу комбо:

Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.

Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет "шире", расходится в бока он быстрее остальных.

Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.

Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x - простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе « −1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| - отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.

Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.

Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно-заданных графика:


C двумя модулями кусочно-заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!


Выводы:

  1. Модуль - это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.

Знак модуля, пожалуй, одно из самых интересных явлений в математике. В связи с этим у многих школьников возникает вопрос, как строить графики функций, содержащих модуль. Давайте подробно разберем этот вопрос.

1. Построение графиков функций, содержащих модуль

Пример 1.

Построить график функции y = x 2 – 8|x| + 12.

Решение.

Определим четность функции. Значение для y(-x) совпадает со значением для y(x), поэтому данная функция четная. Тогда ее график симметричен относительно оси Oy. Строим график функции y = x 2 – 8x + 12 для x ≥ 0 и симметрично отображаем график относительно Oy для отрицательных x (рис. 1).

Пример 2.

Следующий график вида y = |x 2 – 8x + 12|.

– Какова область значений предложенной функции? (y ≥ 0).

– Как расположен график? (Над осью абсцисс или касаясь ее).

Это значит, что график функции получают следующим образом: строят график функции y = x 2 – 8x + 12, оставляют часть графика, которая лежит над осью Ox, без изменений, а часть графика, которая лежит под осью абсцисс, симметрично отображают относительно оси Ox (рис. 2).

Пример 3.

Для построения графика функции y = |x 2 – 8|x| + 12| проводят комбинацию преобразований:

y = x 2 – 8x + 12 → y = x 2 – 8|x| + 12 → y = |x 2 – 8|x| + 12|.

Ответ: рисунок 3.

Рассмотренные преобразования справедливы для всех видов функций. Составим таблицу:

2. Построение графиков функций, содержащих в формуле «вложенные модули»

Мы уже познакомились с примерами квадратичной функции, содержащей модуль, а так же с общими правилами построения графиков функций вида y = f(|x|), y = |f(x)| и y = |f(|x|)|. Эти преобразования помогут нам при рассмотрении следующего примера.

Пример 4.

Рассмотрим функцию вида y = |2 – |1 – |x|||. Выражение, задающее функцию, содержит «вложенные модули».

Решение.

Воспользуемся методом геометрических преобразований.

Запишем цепочку последовательных преобразований и сделаем соответствующий чертеж (рис. 4):

y = x → y = |x| → y = -|x| → y = -|x| + 1 → y = |-|x| + 1|→ y = -|-|x| + 1|→ y = -|-|x| + 1| + 2 → y = |2 –|1 – |x|||.

Рассмотрим случаи, когда преобразования симметрии и параллельного переноса не являются основным приемом при построении графиков.

Пример 5.

Построить график функции вида y = (x 2 – 4)/√(x + 2) 2 .

Решение.

Прежде чем строить график, преобразуем формулу, которой задана функция, и получим другое аналитическое задание функции (рис. 5).

y = (x 2 – 4)/√(x + 2) 2 = (x– 2)(x + 2)/|x + 2|.

Раскроем в знаменателе модуль:

При x > -2, y = x – 2, а при x < -2, y = -(x – 2).

Область определения D(y) = (-∞; -2)ᴗ(-2; +∞).

Область значений E(y) = (-4; +∞).

Точки, в которых график пересекает с оси координат: (0; -2) и (2; 0).

Функция убывает при всех x из интервала (-∞; -2), возрастает при x от -2 до +∞.

Здесь нам пришлось раскрывать знак модуля и строить график функции для каждого случая.

Пример 6.

Рассмотрим функцию y = |x + 1| – |x – 2|.

Решение.

Раскрывая знак модуля, необходимо рассмотреть всевозможную комбинацию знаков подмодульных выражений.

Возможны четыре случая:

{x + 1 – x + 2 = 3, при x ≥ -1 и x ≥ 2;

{-x – 1 + x – 2 = -3, при x < -1 и x < 2;

{x + 1 + x – 2 = 2x - 1, при x ≥ -1 и x < 2;

{-x – 1 – x + 2 = -2x + 1, при x < -1 и x ≥ 2 – пустое множество.

Тогда исходная функция будет иметь вид:

{3, при x ≥ 2;

y = {-3, при x < -1;

{2x – 1, при -1 ≤ x < 2.

Получили кусочно-заданную функцию, график которой изображен на рисунке 6.

3. Алгоритм построения графиков функций вида

y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b.

В предыдущем примере было достаточно легко раскрыть знаки модуля. Если же сумм модулей больше, то рассмотреть всевозможные комбинации знаков подмодульных выражений проблематично. Как же в этом случае построить график функции?

Заметим, что графиком является ломаная, с вершинами в точках, имеющих абсциссы -1 и 2. При x = -1 и x = 2 подмодульные выражения равны нулю. Практическим путем мы приблизились к правилу построения таких графиков:

Графиком функции вида y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b является ломаная с бесконечными крайними звеньями. Чтобы построить такую ломаную, достаточно знать все ее вершины (абсциссы вершин есть нули подмодульных выражений) и по одной контрольной точке на левом и правом бесконечных звеньях.

Задача.

Построить график функции y = |x| + |x – 1| + |x + 1| и найти ее наименьшее значение.

Решение:

Нули подмодульных выражений: 0; -1; 1. Вершины ломаной (0; 2); (-1; 3); (1; 3). Контрольная точка справа (2; 6), слева (-2; 6). Строим график (рис. 7). min f(x) = 2.

Остались вопросы? Не знаете, как построить график функции с модулем?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Понравилась статья? Поделиться с друзьями: