Элементы комбинаторики. Комбинаторика - первый шаг в большую науку Задачи учебного занятия

Он может пригласить в гости одного или несколько из них. Определите общее число возможных вариантов. №3 В 9 «а» классе учатся 25 учащихся, в 9 «б» - 20 учащихся, а в 9 «в» - 18 учащихся. Для работы на пришкольном участке надо выделить трёх учащихся из 9 «а», двух -из 9 «б» и одного – из 9 «в». Сколько существует способов выбора учащихся для работы на пришкольном участке? С №1 Пять мальчиков и четыре девочки хотят сесть на девятиместную скамейку так, чтобы каждая девочка сидела между двумя мальчиками. Сколькими способами они могут это сделать? №2 Из 12 солдат, в число которых входят Иванов и Петров, надо отправить в наряд трёх человек. Сколькими способами это можно сделать, если: а) Иванов и Петров должны пойти в наряд обязательно; б) Иванов и Петров должны остаться; в)Иванов должен пойти в наряд, а Петров –остаться? (Ответы) Устал - отдохни.

В №1 В шахматном кружке занимаются 16 человек. Сколькими способами тренер может выбрать из них для предстоящего турнира: а) команду из четырёх человек; б) команду из четырёх человек, указав при этом, кто из членов команды будет играть на первой, второй, третьей и четвёртой досках?

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Комбинаторика Подготовили учащиеся МБОУ СОШ № 7 г. Мичуринска Большакова Д. , Щербинина М. Учитель Духанина О.С.

2 слайд

Описание слайда:

Ход исследования: Что такое комбинаторика Что же послужило толчком для возникновения и развития комбинаторики Где в практической деятельности человека встречается комбинаторика Задачи Социологический опрос Вывод

3 слайд

Описание слайда:

4 слайд

Описание слайда:

Что такое Комбинаторика? Комбинаторика – раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве». Комбинаторика (от латинского combinare) означает “соединять, сочетать”.

5 слайд

Описание слайда:

Возникновение Комбинаторики Комбинаторные задачи возникли и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т. д. С комбинаторными задачами люди столкнулись в глубокой древности. В Древнем Китае увлекались составлением магических квадратов. В Древней Греции занимались теорией фигурных чисел. В Древней Греции подсчитывали число различных комбинаций длинных и коротких слогов в стихотворных размерах, занимались теорией фигурных чисел, изучали фигуры, которые можно составить из частей и т.д.

6 слайд

Описание слайда:

Возникновение Комбинаторики С давних пор дипломаты, стремясь к тайне переписки, изобретали сложные шифры, а секретные службы других государств пытались эти шифры разгадать. Стали применять шифры, основанные на комбинаторных принципах. В 1970 – 1980 гг. комбинаторика добилась новых успехов. В частности, с помощью ЭВМ решена проблема четырёх красок: доказано, что любую карту можно раскрасить в четыре цвета так, что никакие две страны, имеющие общую границу, не будут окрашены в один и тот же цвет.

7 слайд

Описание слайда:

Сферы применения Выбором объектов и расположением их в том или ином порядке приходится заниматься чуть ли не во всех областях человеческой деятельности, например: химику, изучающему строение органических молекул, имеющих данный атомный состав. ученому-агроному, планирующему распределение сельскохозяйственных культур на нескольких полях конструктору, разрабатывающему новую модель механизма

8 слайд

Описание слайда:

Задача №1 Государственные флаги многих стран состоят из горизонтальных или вертикальных полос разных цветов. Сколько существует различных флагов, состоящих из двух горизонтальных полос одинаковой ширины и разного цвета – белого, красного и синего? Решение: Пусть верхняя полоса флага – белая (Б). Тогда нижняя полоса может быть красной (К) или синей (С). Получили две комбинации – два варианта флага. Если верхняя полоса флага – красная, то нижняя может быть белой или синей. Получим ещё два варианта флага. Пусть, наконец, верхняя полоса – синяя, тогда нижняя может быть белой или красной. Это ещё два варианта флага. Всего получили 3 2 = 6 комбинаций – шесть вариантов флагов.

9 слайд

Описание слайда:

Задача №2 Сколько трехзначных чисел можно составить из цифр 1, 3, 5, 7? Используя в записи числа каждую из них не более одного раза. Решение: Чтобы ответить на этот вопрос, выпишем все такие числа. Пусть на первом месте стоит цифра 1. На втором месте может быть записана любая из цифр 3, 5, 7. Запишем, например, на втором месте цифру 3. Тогда в качестве третьей цифры можно взять 5 или 7. Получим два числа 135 и 137. Если на втором месте записать цифру 5, то в качестве третьей цифры можно взять цифру 3или 7. В этом случае получим числа 153 и 157. Если же, наконец, на втором месте записать цифру 7, то получим числа 173 и 175. Итак, мы составили все числа, которые начинаются с цифры 1. Таких чисел шесть: 135, 137, 153, 157, 173, 175. Аналогичным способом можно составить числа, которые начинаются с цифры 2,с цифры 5, с цифры 7. Полученные результаты запишем в четыре строки, в каждой из которых шесть чисел: 135, 137, 153, 157, 173, 175, 315, 317, 351, 357, 371, 375, 513, 517, 531, 537, 571, 573, 713, 715, 731, 735, 751, 753, Таким образом, из цифр 1, 3, 5, 7 (без повторения цифр) можно составить 24 трехзначных числа.

10 слайд

Описание слайда:

Дерево возможных вариантов 1 5 7 3 1 3 3 7 5 7 1 5 7 1 3 7 1 3 5 7 5 3 5 7 1 7 1 5 3 7 1 7 1 3 3 1 5 1 5 3 Всего 24 варианта Всего 24 варианта

11 слайд

Описание слайда:

Задача №3 Из города А в город В ведут две дороги, из города В в город С – три дороги, из города С до пристани – две дороги. Туристы хотят проехать из города А через города В и С к пристани. Сколькими способами они могут выбрать маршрут? А П С В Решение: Путь из А в В туристы могут выбрать двумя способами. Далее в каждом случае они могут проехать из В в С тремя способами. Значит, имеются 2 3 вариантов маршрута из А в С. Так как из города С на пристань можно попасть двумя способами, то всего существует 2 3 2, т.е. 12 способов выбора туристами маршрута из города А к пристани.

1 слайд

Не нужно нам владеть клинком, Не ищем славы громкой. Тот побеждает, кто знаком С искусством мыслить, тонким. Английский поэт Уордсворт

2 слайд

Введение Цель работы Задачи работы Что же такое «Комбинаторика»? История возникновения Правила решения комбинаторных задач Правило суммы Правило произведения Комбинации С повторениями Без повторений Тезаурус Список используемой литературы и web-ресурсов Заключение Страница автора

3 слайд

Создать справочное пособие для учащихся 10-11 классов, обучающихся на базовом уровне, образовательных учреждений. Подготовить первую часть большого проекта «Теория вероятности как самое встречаемое в нашей жизни явление».

4 слайд

1.1 Подобрать литературу и web – ресурсы по теме «Комбинаторика». 1.2 Исследовать все возможные методы решения комбинаторных задач на основе реальной жизни. 1.3 Проследить историю выделения самостоятельной области математики – комбинаторики. 2.1 Обосновать изучение курса комбинаторики в старшей школе как реальную необходимость при осуществлении курса принципа непрерывности образования «Школа – вуз». 2.2 Наметить возможные варианты введения курса комбинаторики в школьное образовательное пространство. 2.3 Подобрать материал для создания справочника.

5 слайд

Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов расположения некоторых предметов или число всех возможных способов осуществления некоторого действия. Разные пути или варианты, которые приходится выбирать человеку, складываются в самые разнообразные комбинации. Такие задачи приходиться рассматривать при определении наиболее выгодных коммуникаций внутри города, при организации автоматической системы управления, значит и в теории вероятностей, и в математической статистике со всеми их многочисленными приложениями. И целый раздел математики, называемый комбинаторикой, занят поиском ответов на вопросы: сколько всего есть комбинаций в том или другом случае.

6 слайд

Комбинаторика – это раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации, составленной по заданным правилам.

7 слайд

Комбинаторика как наука стала развиваться в XIII в. параллельно с возникновением теории вероятностей. Первые научные исследования по этой теме принадлежат итальянским ученым Дж. Кардано, Н. Чарталье (1499-1557), Г. Галилею (1564-1642) и французским ученым Б.Пискамо (1623-1662) и П. Ферма. Комбинаторику, как самостоятельный раздел математики первым стал рассматривать немецкий ученый Г. Лейбниц в своей работе «Об искусстве комбинаторики», опубликованной в 1666г. Он также впервые ввел термин «Комбинаторика».

8 слайд

9 слайд

Задача: На столе лежат 3 черных и 5 красных карандашей. Сколькими способами можно выбрать карандаш любого цвета? Решение: Выбрать карандаш любого цвета можно 5+3=8 способами. Правило суммы в комбинаторике: Если элемент а можно выбрать m способами, а элемент в - n способами, причем любой выбор элемента а отличен от любого выбора элементов в, то выбор «а или в» можно сделать m+n способами. Примеры задач

10 слайд

Задача: В классе 10 учащихся занимаются спортом, остальные 6 учащихся посещают танцевальный кружок. 1)Сколько пар учащихся можно выбрать так, чтобы один из пары был спортсменом, другой танцором? 2)Сколько возможностей выбора одного ученика? Решение: 1)Возможность выбора спортсменов 10, а на каждого из 10 спортсменов выборов танцора 6. Значит, возможность выбора пар танцора и спортсмена 10·6=60. 2) Возможность выбора одного ученика 10+6=16.

11 слайд

Задача: Из города А в город В ведут 3 дороги. А из города В в город С ведут 4 дороги. Сколько путей, проходящих через В, ведут из А в С? Решение: Можно рассуждать таким образом: для каждой из трех путей из А в В имеется четыре способа выбора дороги из В в С. Всего различных путей из А в С равно произведению 3·4, т.е. 12. Правило произведения: Пусть нужно выбрать к элементов. Если первый элемент можно выбрать n1 способами, второй – n2 способами и т. д., то число способов к элементов, равно произведению n1· n2·… nк. Примеры задач

12 слайд

Задача: В школьной столовой имеются 2 первых, 5 вторых и 4 третьих блюд. Сколькими способами ученик может выбрать обед, состоящий из первых, вторых и третьих блюд? Решение: Первое блюдо можно выбрать 2 способами. Для каждого выбора первого блюда существует 5 вторых блюд. Первые два блюда можно выбрать 2·5=10 способами. И, наконец, для каждой 10 этих выборов имеются четыре возможности выбора третьего блюда, т. е. Существует 2·5·4 способов составления обеда из трех блюд. Итак, обед может быть составлен 40 способами.

13 слайд

14 слайд

15 слайд

Размещением из n элементов по к (к≤n) называется любое множество, состоящее из любых к элементов, взятых в определенном порядке из данных n элементов. Количество всех размещений из n элементов по m обозначают: Примеры задач n! – факториал числа n

16 слайд

Задача: Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец? Решение: Два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами считаются, разными, поэтому: Возможно 360 вариантов.

17 слайд

Перестановкой из n элементов называется каждое расположение этих элементов в определенном порядке. Количество всех перестановок из n элементов обозначают Pn Pn=n! Примеры задач

18 слайд

Квартет Проказница Мартышка Осёл, Козёл, Да косолапый Мишка Затеяли играть квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Вот пуще прежнего пошли у них разборы И споры, Кому и как сидеть… Решение

20 слайд

Сочетанием без повторений называется такое размещение, при котором порядок следования элементов не имеет значения. Таким образом, количество вариантов при сочетании будет меньше количества размещений. Число сочетаний из n элементов по m обозначается: Примеры задач

21 слайд

Задача: Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр. Решение: Так как кнопки нажимаются одновременно, то выбор этих трех кнопок – сочетание. Отсюда возможно:

22 слайд

Часто в задачах по комбинаторике встречаются множества, в которых какие-либо компоненты повторяются. Например: в задачах на числа – цифры. Для таких задач используются формулы: где n-количество всех элементов, n1,n2,…,nr-количество одинаковых элементов. Примеры задач Примеры задач Примеры задач

23 слайд

Задача: Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5? Решение: Так как порядок цифр в числе существенен, цифры могут повторяться, то это будут размещения с повторениями из пяти элементов по три, а их число равно:

24 слайд

Задача: В кондитерском магазине продавались 4 сорта пирожных: эклеры, песочные, наполеоны и слоеные. Сколькими способами можно купить 7 пирожных. Решение: Покупка не зависит от того, в каком порядке укладывают купленные пирожные в коробку. Покупки будут различными, если они отличаются количеством купленных пирожных хотя бы одного сорта. Следовательно, количество различных покупок равно числу сочетаний четырех видов пирожных по семь -

27 слайд

Мы считаем, что работа достигла своих целей. Мы составили справочное учебное пособие, которое нацелено оживить школьную математику введением в неё интересных задач, посильных для учащихся теоретических вопросов. Работа предназначена для учащихся 10-11 классов, обучающихся на базовом уровне, образовательных учреждений для углубления знаний по математике Отличительной способностью данного пособия являются: посильная для учащихся III ступени теоретическая часть; подбор и составление задач на основе жизненного материала, сказочных сюжетов. Мы надеемся, что наша работа заинтересует учащихся, поможет развитию их кругозора и мышления, будет способствовать более качественной подготовке к сдаче единого государственного экзамена.

28 слайд

Ученик: Захаров Дмитрий Класс: 10 Руководитель: Торопова Нина Анатольевна МОУ «Средняя образовательная школа с углубленным изучением отдельных предметов №5» г. Красноярска

  • Комбинаторика – раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов.
  • Слово «комбинаторика» происходит от латинского слова «combinare», что в переводе на русский означает – «сочетать», «соединять».
  • Термин "комбинаторика" был введён знаменитым Готфридом Вильгельмом Лейбницем, - всемирно известным немецким учёным.
  • Комбинаторика - важный раздел математики,
  • знание которого необходимо представителям самых разных специальностей. С комбинаторными задачами приходится иметь дело физикам, химикам, биологам, лингвистам, специалистам по кодам и др.
  • Комбинаторные методы лежат в основе решения многих задач теории
  • вероятностей и
  • ее приложений.
  • В Древней Греции
  • подсчитывали число различных комбинаций длинных и коротких слогов в стихотворных размерах, занимались теорией фигурных чисел, изучали фигуры, которые можно составить из частей и т.д.
  • Со временем появились различные игры
  • (нарды, карты, шашки, шахматы и т. д.)
  • В каждой из этих игр приходилось рассматривать различные сочетания фигур, и выигрывал тот, кто их лучше изучал, знал выигрышные комбинации и умел избегать проигрышных.
  • Готфрид Вильгельм Лейбниц (1.07.1646 - 14.11.1716)
  • Комбинаторику, как самостоятельный раздел математики первым стал рассматривать немецкий ученый Г. Лейбниц в своей работе «Об искусстве комбинаторики», опубликованной в 1666г. Он также впервые ввел термин «Комбинаторика».
  • Леонард Эйлер(1707-1783)
  • рассматривал задачи о разбиении чисел, о паросочетаниях, циклических расстановках, о построении магических и латинских квадратов, положил начало совершенно новой области исследований, выросшей впоследствии в большую и важную науку-топологию, которая изучает общие свойства пространства и фигур.
Если некоторый объект A можно выбрать m способами, а другой объект В можно выбрать n способами, то выбор «либо А, либо В» можно осуществить (m+n) способами.
  • Если некоторый объект A можно выбрать m способами, а другой объект В можно выбрать n способами, то выбор «либо А, либо В» можно осуществить (m+n) способами.
  • При использовании правила суммы надо следить, чтобы ни один из способов выбора объекта А не совпадал с каким-либо способом выбора объекта В.
  • Если такие совпадения есть, правило суммы утрачивает силу, и мы получаем лишь (m + n - k) способов выбора, где k-число совпадений.
В коробке находится 10 шаров: 3 белых, 2 черных, 1 синий и 4 красных. Сколькими способами можно взять из ящика цветной шар?
  • В коробке находится 10 шаров: 3 белых, 2 черных, 1 синий и 4 красных. Сколькими способами можно взять из ящика цветной шар?
  • Решение:
  • Цветной шар – это синий или красный, поэтому применим правило суммы:
Если объект А можно выбрать m способами и если после каждого такого выбора объект В можно выбрать n способами, то выбор пары (А,В) в указанном порядке можно осуществить mn способами.
  • Если объект А можно выбрать m способами и если после каждого такого выбора объект В можно выбрать n способами, то выбор пары (А,В) в указанном порядке можно осуществить mn способами.
  • При этом число способов выбора второго элемента не зависит от того, как именно выбран первый элемент.
Сколько может быть различных комбинаций выпавших
  • Сколько может быть различных комбинаций выпавших
  • граней при бросании двух игральных костей?
  • Решение:
  • На первой кости может быть: 1,2,3,4,5 и 6 очков, т.е. 6 вариантов.
  • На второй – 6 вариантов.
  • Всего: 6*6=36 вариантов.
  • Правила суммы и произведения верны для любого количества объектов.
№1. Из города А а город В ведут 6 дорог, а из города В в город С – 3 дороги. Сколькими способами можно проехать из города А в город С?
  • №1. Из города А а город В ведут 6 дорог, а из города В в город С – 3 дороги. Сколькими способами можно проехать из города А в город С?
  • №2. На книжной полке стоят 3 книги по алгебре, 7 по геометрии и 2 по литературе. Сколькими способами можно взять с полки одну книгу по математике?
  • №3. В меню имеется 4 первых блюда, 3 – вторых, 2 – десерта. Сколько различных обедов можно из них составить?
  • « Эн факториал»-n!.
  • Определение.
  • Произведение подряд идущих первых n
  • натуральных чисел обозначают n! и называют
  • «эн факториал»: n!=1 2 3 … (n-1) n.
  • 1 2 3=
  • 1 2 3 4=
  • 1 2 3 4 5=
  • 1 2 3 4 5 6=
  • 1 2 3 4 5 6 7=
  • n!=(n-1)! n
  • Удобная формула!!!
Комбинации из n-элементов, отличающиеся друг от друга только порядком следования элементов, называются перестановками.
  • Комбинации из n-элементов, отличающиеся друг от друга только порядком следования элементов, называются перестановками.
  • Обозначаются Рn
  • Перестановки
  • Из чисел 1, 5, 9 составить трёхзначное
  • число без повторяющихся цифр.
  • 2 комбинации
  • 2 комбинации
  • 2 комбинации
  • Всего 2 3=6 комбинаций.
Комбинации из n-элементов по k, отличающиеся друг от друга составом и порядком, называются размещениями.
  • Комбинации из n-элементов по k, отличающиеся друг от друга составом и порядком, называются размещениями.
  • Размещения
Комбинации из n-элементов по к к .
  • Комбинации из n-элементов по к , отличающиеся только составом элементов, называются сочетаниями из n -элементов по к .
  • Сочетания
Из 20 учащихся надо выбрать двух дежурных.
  • Из 20 учащихся надо выбрать двух дежурных.
  • Сколькими способами это можно сделать?
  • Решение:
  • Надо выбрать двух человек из 20.
  • Ясно, что от порядка выбора ничего не зависит, то есть
  • Иванов - Петров или Петров - Иванов - это одна
  • и та же пара дежурных. Следовательно, это будут сочетания из 20 по 2.
1. Сколько слов можно образовать из букв слова фрагмент, если слова должны состоять: из 8 букв; из 7 букв; из 3 букв?
  • 1. Сколько слов можно образовать из букв слова фрагмент, если слова должны состоять: из 8 букв; из 7 букв; из 3 букв?
  • 2. Студенту необходимо сдать 4 экзамена в течение десяти дней. Сколькими способами можно составить ему расписание экзаменов?
  • 3. Сколькими способами из восьми человек можно избрать комиссию, состоящую из пяти членов?
  • 4. Сколько существует различных автомобильных номеров, которые состоят из 5 цифр, если первая из них не равна нулю? Если номер состоит из одной буквы, за которой следуют четыре цифры, отличные от нуля?
  • 5. Подрядчику нужны 4 плотника, а к нему с предложением своих услуг обратились 10. Сколькими способами он может выбрать среди них четверых?
  • 6. Сколькими способами можно расставить на полке семь книг
  • 7. Сколько 5-буквенных слов можно образовать, используя для этого 10 различных букв.
  • 8. Сколькими способами можно отобрать несколько фруктов из семи яблок, четырех лимонов и девяти апельсинов? (Фрукты одного вида считаем неразличимыми.)

Презентация на тему:Элементы Комбинаторики!!!


Студента Группы ПР – 101(К) Савченко А.А Проверила Малыгина Г.С.


Комбинаторика! (Комбинаторный анализ) - раздел математики, изучающий дискретные объекты, множества (сочетания,перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана со многими другими областями математики - алгеброй, геометрией, теорией вероятностей, и имеет широкий спектр применения в различных областях знаний (например в генетике, информатике, статистической физике). Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве».


Методы Комбинаторики Перестановкой из n элементов (например чисел 1,2,…,n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n. Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений. Композицией числа n называется всякое представление n в виде упорядоченной суммы целых положительных чисел. Разбиением числа n называется всякое представление n в виде неупорядоченной суммы целых положительных чисел.


Комбинаторные задачи Комбинаторика – от латинского слова combinare, что означает «соединять, сочетать». Методы комбинаторики находят широкое применение в физике, химии, биологии, экономики и др. областях знания. Комбинаторику можно рассматривать как часть теории множеств – любую комбинаторную задачу можно свести к задаче о конечных множествах и их отображениях.


I. Уровни решения комбинаторных задач 1. Начальный уровень. Задачи поиска хотя бы одного решения, хотя бы одного расположения объектов, обладающих заданным свойствами - отыскание такого расположения десяти точек на пяти отрезках, при котором на каждом отрезке лежит по четыре точки; - такого расположения восьми ферзей на шахматной доске, при котором они не бьют друг друга. Иногда удаётся доказать, что данная задача не имеет решения (например, нельзя расположить 10 шаров в 9 урнах так, что бы в каждой урне было не более одного шара – хотя бы в одной урне окажется не менее двух шаров). 6


2. Второй уровень. Если комбинаторная задача имеет несколько решений, то возникает вопрос о подсчете числа таких решений, описании всех решений данной задачи. 3. Третий уровень. Решения данной комбинаторной задачи отличаются друг от друга некоторыми параметрами. В этом случае возникает вопрос отыскания оптимального варианта решения такой задачи. Например: Путешественник хочет выехать из города А, посетить города В, С, и D. После чего вернуться в город А. 7


8 На рис. изображена схема путей, связывающих эти города . Различные варианты путешествий отличаются друг от друга порядком посещения городов В, С, и.D. Существует шесть вариантов путешествия. В таблице указаны варианты и длин каждого пути:


Правила суммы и произведения 1. Сколько различных коктейлей можно составить из четырёх напитков, смешивая их в равных количествах по два? AB, AC, AD, BC, BD, CD – всего 6 коктейлей 2. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3 ? Первой цифрой двузначного числа может одна из цифр 1, 2, 3 (цифра 0 не может быть первой). Если первая цифра выбрана, то вторая может быть любая из цифр 0, 1, 2, 3. Т.к. каждой выбранной первой соответствует четыре способа выбора второй, то всего имеется 4 + 4 + 4 = 4·3 = 12 различных двузначных чисел. 9 А D С В


2. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3 ? 4 + 4 + 4 = 4·3 = 12 различных двузначных чисел. Первая цифра вторая цифра 1 2 3 10 0 1 2 3 0 1 2 3 0 1 2 3


«Примеры решения комбинаторных задач: перебор вариантов, правило суммы, правило умножения». 11 Сколькими способами могут быть расставлены 4 участниц финального забега на четырёх беговых дорожках? Рп = 4· 3 ·2 ·1= 24 способа (перестановки из 4-х элементов) 1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3 3 4 2 4 2 3 4 3 4 2 3 2 3 4 1 4 3 1 4 3 4 1 1 3 2 4 1 4 1 2 4 2 4 1 2 1 2 3 1 3 1 2 3 2 3 1 2 1 1 дорожка 2 доржка 3доржка 4 дор. Р е ш е н о п е р е б о р о м в а р и а н т о в


Пример Задачи Комбинаторики При игре в кости бросаются две кости, и выпавшие очки складываются; сколько существует комбинаций, таких, что сумма очков на верхних гранях равна двенадцати? Решение: Каждый возможный исход соответствует функции (аргумент функции - это номер кости, значение - очки на верхней грани). Очевидно, что лишь 6+6 даёт нам нужный результат 12. Таким образом существует лишь одна функция, ставящая в соответствие 1 число 6, и 2 число 6. Или, другими словами, существует всего одна комбинация, такая, что сумма очков на верхних гранях равна двенадцати.


Разделы Комбинаторики!


Перечислительная комбинаторика Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций (например, перестановок) образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п. Количество конфигураций, образованных несколькими манипуляциями над множеством, подсчитывается согласно правиламсложения и умножения. Типичным примером задач данного раздела является подсчёт количества перестановок. Другой пример - известная Задача о письмах.


Вероятностная комбинаторика! Этот раздел отвечает на вопросы вида: какова вероятность присутствия определённого свойства у заданного множества.


Краткая историческая справка Первые работы, в которых зарождались основные понятия теории вероятностей, представляли собой попытки создания теории азартных игр (Кардано, Гюйгенс, Паскаль, Ферма и другие в XVI-XVII вв.). Следующий этап развития теории вероятностей связан с именем Якоба Бернулли (1654-1705). Доказанная им теорема, получившая впоследствии название «Закона больших чисел», была первым теоретическим обоснованием накопленных ранее фактов. Дальнейшими успехами теория вероятностей обязана Муавру, Лапласу, Гауссу, Пуассону и др. Новый, наиболее плодотворный период связан с именами П. Л. Чебышева (1821-1894) и его учеников А.А.Маркова(1856-1922) и А. М.Ляпунова (1857-1918). В этот период теория вероятностей становится стройной математической наукой. Ее последующее развитие обязано в первую очередь русским и советским математика м (С. Н. Бернштейн, В. И. Романовский, А. Н. Колмогоров, А. Я. Хинчин, Б. В. Гнеденко, Н. В. Смирнов и др.). В настоящее время ведущая роль в создании новых ветвей теории вероятностей также принадлежит советским

Понравилась статья? Поделиться с друзьями: