Как образуется ионная связь: примеры. Ионная химическая связь Как образуется ионная химическая связь











Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока :

  • Сформировать понятие об химических связях на примере ионной связи. Добиться понимания образования ионной связи как крайнего случая полярной.
  • Обеспечить в ходе урока усвоение следующих основных понятий: ионы (катион, анион), ионная связь.
  • Развивать умственную деятельность учащихся через создание проблемной ситуации при изучении нового материала.

Задачи:

  • научить распознавать виды химической связи;
  • повторить строение атома;
  • исследовать механизм образования ионной химической связи;
  • научить составлять схемы образования и электронные формулы ионных соединений, уравнения реакций с обозначением перехода электронов.

Оборудование : компьютер, проектор, мультимедийный ресурс, периодическая система химических элементов Д.И. Менделеева, таблица «Ионная связь».

Тип урока: Формирование новых знаний.

Вид урока: Мультимедиа урок.

Х од урока

I. Организационный момент .

II. Проверка домашнего задания .

Учитель: Как атомы могут принимать устойчивые электронные конфигурации? Каковы cпособы образования ковалентной связи?

Ученик: Полярная и неполярная ковалентные связи образованы по обменному механизму. К обменному механизму относят случаи, когда в образовании электронной пары от каждого атома участвует по одному электрону. Например, водород: (слайд 2)

Связь возникает благодаря образованию общей электронной пары за счет объединения неспаренных электронов. У каждого атома есть по одному s-электрону. Атомы Н равноценны и пары одинаково принадлежат обоим атомам. Поэтому же принципу происходит образование общих электронных пар (перекрывание р-электронных облаков) при образовании молекулы F 2 . (слайд 3)

Запись H· означает, что у атома водорода на внешнем электронном слое находится 1 электрон. Запись показывает, что на внешнем электронном слое атома фтора находится 7 электронов.

При образовании молекулы N 2 . Образуются 3 общие электронные пары. Перекрываются р-орбитали. (слайд 4)

Связь называется неполярная.

Учитель: Мы сейчас рассмотрели случаи, когда образуются молекулы простого вещества. Но вокруг нас множество веществ, сложного строения. Возьмем молекулу фтороводорода. Как в этом случае происходит образование связи?

Ученик: При образовании молекулы фтороводорода перекрывается орбиталь s-электрона водорода и орбиталь р-электрона фтора Н-F. (слайд 5)

Связывающая электронная пара смещена к атому фтора, в результате чего образуется диполь . Связь называется полярная .

III. Актуализация знаний .

Учитель: Химическая связь возникает вследствие изменений, которые происходят с наружными электронными оболочками соединяющихся атомов. Это возможно потому, что наружные электронные слои не завершены у элементов, кроме инертных газов. Химическая связь объясняется стремлением атомов приобрести устойчивую электронную конфигурацию, подобную конфигурации «ближайшего» к ним инертного газа.

Учитель: Записать схему электронного строения атома натрия (у доски). (слайд 6)

Ученик: Атому натрия для достижения устойчивости электронной оболочки необходимо либо отдать один электрон, либо принять семь. Натрий легко отдаст свой далекий от ядра и слабо связанный с ним электрон.

Учитель: Составить схему отдачи электрона.

Nа° - 1ē → Nа+ = Ne

Учитель: Записать схему электронного строения атома фтора (у доски).

Учитель: Как добиться завершения заполнения электронного слоя?

Ученик: Атому фтора для достижения устойчивости электронной оболочки необходимо либо отдать семь электронов, либо принять один. Энергетически выгоднее фтору принять электрон.

Учитель: Составить схему приема электрона.

F° + 1ē → F- = Ne

IV. Изучение нового материал.

Учитель обращается с вопросом к классу, в котором ставится задача урока:

Возможны ли другие варианты, при которых атомы могут принимать устойчивые электронные конфигурации? Каковы пути образования таких связей?

Сегодня мы рассмотрим один из видов связей – ионную связь. Сопоставим строение электронных оболочек уже названных атомов и инертных газов.

Беседа с классом.

Учитель: Какой заряд имели атомы натрия и фтора до реакции?

Ученик: Атомы натрия и фтора электронейтральны, т.к. заряды их ядер уравновешиваются электронами, вращающимися вокруг ядра.

Учитель: Что происходит между атомами при отдаче и принятии электронов?

Ученик: Атомы приобретают заряды.

Учитель дает пояснения: В формуле иона дополнительно записывают его заряд. Для этого используют верхний индекс. В нем цифрой указывают величину заряда (единицу не пишут), а потом – знак (плюс или минус). Например, ион Натрия с зарядом +1 имеет формулу Na + (читается «натрий-плюс»), ион Фтора с зарядом -1 – F - («фтор-минус»), гидроксид-ион с зарядом -1 – ОН - («о-аш-минус»), карбонат-ион с зарядом -2 – CO 3 2- («цэ-о-три-два-минус»).

В формулах ионных соединений сначала записывают, не указывая зарядов, положительно заряженные ионы, а потом - отрицательно заряженные. Если формула правильная, то сумма зарядов всех ионов в ней равна нулю.

Положительно заряженный ионназывается катионом ,аотрицательно заряженный ион- анионом.

Учитель: Записываем определение в рабочие тетради:

Ион - это заряженная частица, в которую превращается атом в результате принятия или отдачи электронов.

Учитель: Как определить величину заряда иона кальция Ca 2+ ?

Ученик: Ио́н - электрически заряженная частица, образующаяся в результате потери или присоединения одного или нескольких электронов атомом. У кальция на последнем электронном уровне находятся два электрона, ионизация атома кальция происходит при отдаче двух электронов. Ca 2+ - двухзарядный катион.

Учитель: Что происходит с радиусами этих ионов?

При переходе электронейтрального атома в ионное состояние размер частицы сильно изменяется. Атом, отдавая свои валентные электроны, превращается при этом в более компактную частицу - катион. Например, при переходе атома натрия в катион Na+, имеющий, как указано выше, структуру неона, радиус частицы сильно уменьшается. Радиус аниона всегда больше радиуса соответствующего электронейтрального атома.

Учитель: Что происходит с разноименно заряженными частицами?

Ученик: Разноименно заряженные ионы натрия и фтора, возникающие в результате перехода электрона от атома натрия к атому фтора, взаимно притягиваются и образуют фторид натрия. (слайд 7)

Nа + + F - = NаF

Рассмотренная нами схема образования ионов показывает, как между атомом натрия и атомом фтора образуется химическая связь, которую называют ионной.

Ионная связь – химическая связь, образованная электростатическим притяжением друг к другу разноименно заряженных ионов.

Соединения, которые при этом образуются, называют ионными соединениями.

V. Закрепление нового материала .

Задания для закрепления знаний и умений

1. Сравните строение электронных оболочек атома кальция и катиона кальция, атома хлора и хлорид - аниона:

Прокомментируйте схему образования ионной связи в хлориде кальция:

2. Для выполнения данного задания необходимо разделиться на группы по 3–4 человека. Каждый участник группы рассматривает один пример и результаты представляет всей группе.

Ответ учащихся:

1. Кальций – это элемент главной подгруппы II группы, металл. Его атому легче отдать два внешних электрона, чем принять недостающие шесть:

2. Хлор – это элемент главной подгруппы VII группы, неметалл. Его атому легче принять один электрон, которого ему не хватает до завершения внешнего уровня, чем отдать семь элект­ронов с внешнего уровня:

3. Сначала найдем наименьшее общее кратное между зарядами образовавшихся ионов, оно равно 2 (2x1). Затем определим, сколько атомов кальция нужно взять, чтобы они отдали два электрона, то есть надо взять один атом Са и два атома CI.

4. Схематично образование ионной связи между атомами кальция и хлора можно записать: (слайд 8)

Са 2+ + 2СI - → СаСI 2

Задания для самоконтроля

1. На основе схемы образования химического соединения составьте уравнение химической реакции: (слайд 9)

2. На основе схемы образования химического соединения составьте уравнение химической реакции: (слайд 10)

3. Дана схема образования химического соединения: (слайд 11)

Выберите пару химических элементов, атомы которых могут взаимодействовать в соответствии с этой схемой:

а) Na и O ;
б) Li и F ;
в) K и O ;
г) Na и F

Ковалентная химическая связь обычно возникает между атомами неметаллов с одинаковой или не очень сильно различающейся электроотрицательностью. Если различие в электроотрицательности атомов, между которыми образуется химическая связь, велико (∆x превышает 1.7), то общая электронная пара практически полностью смещается к атому с большей электроотрицательностью. В результате этого образуются частицы, имеющие заряды – положительно и отрицательно заряженные ионы с устойчивой электронной конфигурацией атомов ближайшего благородного газа. Противоположно заряженные ионы прочно удерживаются силами электростатического притяжения – между ними возникает химическая связь, которая называется ионной.

Ионная связь, как правило, возникает между атомами типичных металлов и типичных неметаллов. Характерным свойством атомов металлов является то, что они легко отдают свои валентные электроны, тогда как атомы неметаллов способны легко их присоединять.

Рассмотрим возникновение ионной связи, например, между атомами натрия и атомами хлора в хлориде натрия NaCl.

Отрыв электрона от атома натрия приводит к образованию положительно заряженного иона – катиона натрия Na + .

Присоединение электрона к атому хлора приводит к образованию отрицательно заряженного иона – аниона хлора Cl — .

Между образовавшимися ионами Na + и Cl — , имеющими противоположный заряд, возникает электростатическое притяжение, в результате которого образуется соединение – хлорид натрия с ионным типом химической связи.

Ионная связь – это химическая связь, которая осуществляется за счет электростатического взаимодействия противоположно заряженных ионов.

Таким образом, процесс образования ионной связи сводится к переходу электронов от атомов натрия к атомам хлора с образованием противоположно заряженных ионов, имеющих завершенные электронные конфигурации внешних слоев.

Экспериментально установлено, что в действительности электроны не отрываются полностью от атома металла, а лишь смещаются в сторону атома хлора. Это смещение тем значительней, чем больше разность электроотрицательностей атомов, между которыми образуется ионная связь. Однако даже в случае фторида цезия CsF, в котором разность электроотрицательностей превышает 3.0, заряд атома цезия не равен 1+. Это означает, что электрон атома цезия не полностью переходит к атому фтора. В случае других соединений, для которых разность электроотрицательностей не так велика, смещение электрона еще меньше, и поэтому следует говорить об ионной химической связи с определенной долей ковалентной.

Соединения, в которых вклад ионной связи значителен, принято называть ионными. Большинство бинарных соединений, содержащих атомы металлов, являются ионными, т. е. в них химическая связь в значительной степени ионная. К числу таких соединений относятся галогениды, оксиды, сульфиды, нитриды и др.

Ионная связь возникает не только между простыми катионами и простыми анионами типа F — , Cl — , F 2- , но и между простыми катионами и сложными анионами типа NO 3 — , NO 4 2- , NO 4 3- или гидроксид-ионами ОН — . Подавляющее большинство солей и оснований являются ионными соединениями, например Na 2 SO 4 , Cu(NO 3) 2 , Mg(OH) 2 . Существуют ионные соединения, в состав которых входят сложные катионы, не содержащие атомы металла, например ион аммония NH 4 + , а также соединения, в которых сложными являются и катион, и анион, например сульфат аммония (NH 4) 2 SO 4 .

Вам необходимо включить JavaScript, чтобы проголосовать

Химическая связь возникает благодаря взаимодействию электрических полей создаваемых электронами и ядрами атомов, т.е. химическая связь имеет электрическую природу.

Под химической связью понимают результат взаимодействия 2х или более атомов приводящий к образованию устойчивой многоатомной системы. Условием образования химической связи является уменьшение энергии взаимодействующих атомов, т.е. молекулярное состояние вещества энергетически более выгодно, чем атомное. При образовании химической связи атомы стремятся получить завершенную электронную оболочку.

Различают: ковалентную, ионную, металлическую, водородную и межмолекулярную.

Ковалентная связь – наиболее общий вид химической связи, возникающий за счет обобществления электронной пары посредством обменного механизма – , когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму , если электронная пара передается в общее пользование одним атомом (донором – N, O, Cl, F) другому атому (акцептору – атомы d-элементов).

Характеристики хим связи.

1 – кратность связей – между 2мя атомами возможна только 1 сигма-связь, но наряду с ней между теми же атомами могут быть пи и дельта-связь, что приводит к образованию кратных связей. Кратность определяется числом общих электронных пар.

2 – длина связи – межъядерное расстояние в молекуле, чем больше кратность, тем меньше ее длина.

3 – прочность связи – это количество энергии необходимое для ее разрыва

4 – насыщаемость ковалентной связи проявляется в том, что одна атомная орбиталь может принимать участие в образовании только одной к.с. Это свойство определяет стехиометрию молекулярных соединений.

5 – направленность к.с. в зависимости от того, какую форму и какое направление имеют электронные облака в пространстве при их взаимном перекрывании могут образовываться соединения с линейной и угловой формой молекул.

Ионная связь образуется между атомами которые сильно отличаются по электроотрицательности. Это соединения главных подгрупп 1 и 2 групп с элементами главных подгрупп 6 и 7 групп. Ионной называют химическую связь, которая осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов.

Механизм образования ионной связи: а) образование ионов взаимодействующих атомов; б) образование молекулы за счет притяжения ионов.

Ненаправленность и ненасыщенность ионной связи

Силовые поля ионов равномерно распределяются во всех направлениях поэтому каждый ион может притягивать к себе ионы противоположного знака в любом направлении. В этом заключается ненаправленность ионной связи. Взаимодействие 2х ионов противоположного знака не приводит к полной взаимной компенсации их силовых полей. Поэтому у них сохраняется способность притягивать ионы и по другим направлениям, т.е. ионная связь характеризуется ненасыщенностью. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона).

Металлическая связь – хим. Связь в металлах. У металлов имеется избыток валентных орбиталей и недостаток электронов. При сближении атомов их валентные орбитали перекрываются благодаря чему электроны свободно перемещаются из одной орбитали в другую, осуществляется связь между всеми атомами металла. Связь которую осуществляют относительно свободные электроны между ионами металла в кристаллической решетке называется металлической связью. Связь сильно делокализована и не обладает направленностью и насыщенностью, т.к. валентные электроны равномерно распределены по кристаллу. Наличие свободных электронов обусловливает существование общих свойств металлов: непрозрачность, металлический блеск, высокая электро и теплопроводность, ковкость и пластичность.

Водородная связь – связь между атомом Н и сильноотрицательным элементом (F, Cl, N, O, S). Водородные связи могут быть внутри- и межмолекулярными. ВС слабее ковалентной связи. Возникновение ВС объясняется действием электростатических сил. Атом Н обладает маленьким радиусом и при смещении или отдаче единственного электрона Н приобретает сильный положительный заряд, который действует на электроотрицательность.















Ионная (электровалентная) химическая связь - связь, обусловленная образованием электронных пар за счет перехода валентных электронов от одного атома к другому. Характерна для соединений металлов с наиболее типичными неметаллами, напр.:

Na + + Cl - = Na + Cl

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором. Атом щелочного металла легко теряет электрон, а атом галогена - приобретает. В результате этого возникает катион натрия и хлорид-ион. Они образуют соединение за счет электростатического притяжения между ними.

Взаимодействие между катионами и анионами не зависит от направления, поэтому о ионной связи говорят как о ненаправленной. Каждый катион может притягивать любое число анионов, и наоборот. Вот почему ионная связь является ненасыщенной. Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла. Поэтому "молекулой" ионного соединения следует считать весь кристалл.

Идеальной ионной связи практически не существует. Даже в тех соединениях, которые обычно относят к ионным, не происходит полного перехода электронов от одного атома к другому; электроны частично остаются в общем пользовании. Так, связь во фториде лития на 80% ионная, а на 20% - ковалентная. Поэтому правильнее говорить о степени ионности (полярности) ковалентной химической связи. Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной. При большей разности соединение можно считать ионным.

Ионной моделью химической связи широко пользуются для описания свойств многих веществ, в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами. Это обусловлено простотой описания таких соединений: считают, что они построены из несжимаемых заряженных сфер, отвечающих катионам и анионам. При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Водородная связь

Водородная связь является особым видом химической связи. Известно, что соединения водорода с сильно электроотрицательными неметаллами, такими как F, О,N, имеют аномально высокие температуры кипения. Если в ряду Н 2 Тe–H 2 Se–H 2 Sтемпература кипения закономерно уменьшается, то при переходе отH 2 Sк Н 2 О наблюдается резкий скачок к увеличению этой температуры. Такая же картина наблюдается и в ряду галогенводородных кислот. Это свидетельствует о наличии специфического взаимодействия между молекулами Н 2 О, молекуламиHF. Такое взаимодействие должно затруднять отрыв молекул друг от друга, т.е. уменьшать их летучесть, а, следовательно, повышать температуру кипения соответствующих веществ. Вследствие большой разницы в ЭО химические связиH–F,H–O,H–Nсильно поляризованы. Поэтому атом водорода имеет положительный эффективный заряд (δ +), а на атомахF,OиNнаходится избыток электронной плотности, и они заряжены отрицательно ( -). Вследствие кулоновского притяжения происходит взаимодействие положительно заряженного атома водорода одной молекулы с электроотрицательным атомом другой молекулы. Благодаря этому молекулы притягиваются друг к другу (жирными точками обозначены водородные связи).

Водородной называется такая связь, которая образуется посредством атома водорода, входящего в состав одной из двух связанных частиц (молекул или ионов). Энергия водородной связи (21–29 кДж/моль или5–7 ккал/моль) приблизительнов 10 раз меньше энергии обычной химической связи. И тем не менее, водородная связь обусловливает существование в парах димерных молекул (Н 2 О) 2 , (HF) 2 и муравьиной кислоты.

В ряду сочетаний атомов НF,HO,HN,HCl,HSэнергия водородной связи падает. Она также уменьшается с повышением температуры, поэтому вещества в парообразном состоянии проявляют водородную связь лишь в незначительной степени; она характерна для веществ в жидком и твердом состояниях. Такие вещества как вода, лед, жидкий аммиак, органические кислоты, спирты и фенолы, ассоциированы в димеры, тримеры и полимеры. В жидком состоянии наиболее устойчивы димеры.


Теория химической связи занимает важнейшее место в современной химии. Она объясняет, почему атомы объединяются в химические частицы, и позволяет сравнивать устойчивость этих частиц. Используя теорию химической связи, можно предсказать состав и строение различных соединений. Понятие о разрыве одних химических связей и образовании других лежит в основе современных представлений о превращениях веществ в ходе химических реакций.

Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической частицы или кристалла как целого. Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами: катионами и анионами, ядрами и электронами. При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами. На некотором расстоянии эти силы уравновешивают друг друга, и образуется устойчивая химическая частица.

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами. В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

Взаимодействие ионов

Если атом теряет один или несколько электронов, то он превращается в положительный ион - катион (в переводе с греческого - "идущий вниз). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу. При этом возникает химическая связь, и образуются химические соединения. Такой тип химической связи называется ионной связью:

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами.

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором. Атом щелочного металла легко теряет электрон, а атом галогена - приобретает. В результате этого возникает катион натрия и хлорид-ион. Они образуют соединение за счет электростатического притяжения между ними.

Взаимодействие между катионами и анионами не зависит от направления, поэтому о ионной связи говорят как о ненаправленной. Каждый катион может притягивать любое число анионов, и наоборот. Вот почему ионная связь является ненасыщенной. Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла. Поэтому "молекулой" ионного соединения следует считать весь кристалл.

Для возникновения ионной связи необходимо, чтобы сумма значений энергии ионизации E i (для образования катиона) и сродства к электрону A e (для образования аниона) должна быть энергетически выгодной. Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует. Даже в тех соединениях, которые обычно относят к ионным, не происходит полного перехода электронов от одного атома к другому; электроны частично остаются в общем пользовании. Так, связь во фториде лития на 80% ионная, а на 20% - ковалентная. Поэтому правильнее говорить о степени ионности (полярности) ковалентной химической связи. Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной. При большей разности соединение можно считать ионным.

Ионной моделью химической связи широко пользуются для описания свойств многих веществ, в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами. Это обусловлено простотой описания таких соединений: считают, что они построены из несжимаемых заряженных сфер, отвечающих катионам и анионам. При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Ионные радиусы

В простой электростатической модели ионной связи используется понятие ионных радиусов. Сумма радиусов соседних катиона и аниона должна равняться соответстующему межъядерному расстоянию:

r 0 = r + + r

При этом остается неясным, где следует провести границу между катионом и анионом. Сегодня известно, что чисто ионной связи не существует, так как всегда имеется некоторое перекрывание электронных облаков. Для вычисления радиусов ионов используют методы исследования, которые позволяют определять электронную плотность между двумя атомами. Межъядерное расстояние делят в точке, где электронная плотность минимальна.

Размеры иона зависят от многих факторов. При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра) ионный радиус уменьшается. Это особенно хорошо заметно в ряду лантаноидов, где ионные радиусы монотонно меняются от 117 пм для (La 3+) до 100 пм (Lu 3+) при координационном числе 6. Этот эффект носит название лантаноидного сжатия .

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера. Однако для d -элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr 4+ до 72 пм у Hf 4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса, связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона: 116 пм у Na + , 86 пм у Mg 2+ , 68 пм у Al 3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента: Fe 2+ 77 пм, Fe 3+ 63 пм, Fe 6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе, поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами. Это хорошо видно на примере иона Ag + ; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6, соответственно.

Структура идеального ионного соединения, обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов, во многом определяется соотношением ионных радиусов катионов и анионов. Это можно показать простыми геометрическими построениями.

Отношение r + : r Координационное число катиона Окружение Пример
0,225−0,414 4 Тетраэдрическое ZnS
0,414−0,732 6 Октаэдрическое NaCl
0,732−1,000 8 Кубическое CsCl
>1,000 12 Додекаэдрическое В ионных кристаллах не обнаружено

Энергия ионной связи

Энергия связи для ионного соединения - это энергия, которая выделяется при его образовании из бесконечно удаленных друг от друга газообразных противоионов. Рассмотрение только электростатических сил соответствует около 90% от общей энергии взаимодействия, которая включает также вклад неэлектростатических сил (например, отталкивание электронных оболочек).

При возникновении ионной связи между двумя свободными ионами энергия их притяжения определяется законом Кулона :

E (прит.) = q + q − / (4π r ε),

где q + и q − - заряды взаимодействующих ионов, r - расстояние между ними, ε - диэлектрическая проницаемость среды.

Так как один из зарядов отрицателен, то значение энергии также будет отрицательным.

Согласно закону Кулона, на бесконечно малых расстояниях энергия притяжения должна стать бесконечно большой. Однако этого не происходит, так как ионы не являются точечными зарядами. При сближении ионов между ними возникают силы отталкивания, обусловленные взаимодействием электронных облаков. Энергия отталкивания ионов описывается уравнением Борна:

Е (отт.) = В / r n ,

где В - некоторая константа, n может принимать значения от 5 до 12 (зависит от размера ионов). Общая энергия определяется суммой энергий притяжения и отталкивания:

Е = Е (прит.) + Е (отт.)

Ее значение проходит через минимум. Координаты точки минимума отвечают равновесному расстоянию r 0 и равновесной энергии взаимодействия между ионами E 0:

E 0 = q + q − (1 - 1 / n ) / (4π r 0 ε)

В кристаллической решетке всегда имеет место большее число взаимодействий, чем между парой ионов. Это число определяется в первую очередь типом кристаллической решетки. Для учета всех взаимодействий (ослабевающих с увеличением расстояния) в выражение для энергии ионной кристаллической решетки вводят так называемую константу Маделунга А :

E (прит.) = A q + q − / (4π r ε)

Значение константы Маделунга определяется только геометрией решетки и не зависит от радиуса и заряда ионов. Например, для хлорида натрия она равна 1,74756.

Понравилась статья? Поделиться с друзьями: