Размах ряда чисел примеры. Структурные характеристики вариационного ряда распределения

Основные понятия

Для экспериментальных данных, полученных по выборке, можно вычислить ряд числовых характеристик (мер).

Мода - числовое значение, которое встречается в выборке наиболее часто. Мода обозначается иногда как Мо.

Например, в ряду значении (2 6 6 8 9 9 9 10) модой является 9, потому что 9 встречается чаше любого другого числа.

Мода представляет собой наиболее часто встречающееся значение (в данном примере это 9) а не частоту встречаемости этого значения (в данном примере равную 3).

Моду находят согласно правилам

1. В случае, когда все значения в выборке встречаются одинаково часто, принято считать, что этот выборочный ряд не имеет моды.

Например, 556677 - в этой выборке моды нет.

2. Когда два соседних (смежных) значения имеют одинаковую частоту и их частота больше частот любых других значений, мода вычисляется как среднее арифметическое этих двух значении.

Например, в выборке 1 2 2 2 5 5 5 6 частоты рядом расположенных значении 2 и 5 совпадают и равняются 3. Эта частота больше чем частота других значении 1 и 6 (у которых она равна 1).

Следовательно, модой этого ряда будет величина .

3) Если два несмежных (не соседних) значения в выборке имеют равные частоты которые больше частот любого другого значения, то выделяют две моды. Например, в ряду 10 11 11 11 12 13 14 14 14 17 модами являются значения 11 и 14. В таком случае говорят, что выборка является бимодальной.

Могут существовать и так называемые мультимодальные распределения, имеющие более двух вершин (мод)

4)Если мода оценивается по множеству сгруппированных данных, то для нахождения моды необходимо определить группу с наибольшей частотой признака. Эта группа называется модальной группой .

Медиана - обозначается Ме и определяется как величина по отношению к которой по крайней мере 50% выборочных значении меньше нее и по крайней мере 50% - больше.

Медиана - это значение которое делит упорядоченное множество данных пополам.

Задача 1. Найдем медиану выборки 9 3 5 8 4 11 13

Решение Сначала упорядочим выборку по величинам входящих в нее значении. Получим, 3 4 5 8 9 11 13. Поскольку в выборке семь элементов, четвертый по порядку элемент будет иметь значение большее чем первые три и меньшее чем последние три. Таким образом, медианой будет четвертый элемент - 8

Задача 2. Найдем медиану выборки 20, 9, 13, 1, 4, 11.

Упорядочим выборку 1, 4, 9, 11, 13, 20 Поскольку здесь имеется четное число элементов, то существует две «середины» - 9 и 13 В этом случае медиана определяется как среднее арифметическое этих значений

Среднее арифметическое


Среднее арифметическое ряда из n числовых значений подсчитывается как

Чтобы показать обманчивость этого показателя, приведём известный пример: в одном купе вагона поместилась бабушка 60 лет с четырьмя внуками: один – 4 года, двое – по 5 лет и один – 6 лет. Среднее арифметическое возраста всех пассажиров этого купе 80/5 = 16. В другом купе расположилась компания молодежи: двое – 15-ти летних, один – 16-летний и двое – 17-летних. Средний возраст пассажиров этого купе так же равен 80/5 = 16. Таким образом, по средним арифметическим пассажиры этих купе не отличаются. Но если обратиться к показателю стандартного отклонения, то окажется, что средний разброс относительно среднего возраста в первом случае окажется 24,6, а во втором случае 1.

Кроме того, среднее оказывается достаточно чувствительным к очень маленьким или очень большим величинам, отличающимся от основных значений измеренных характеристик. Пусть 9 человек имеют доход от 4500 до 5200 тыс долларов в месяц. Величина их среднего дохода равняется 4900 долларов Если же к этой группе добавить человека имеющего доход в 20000 тыс долларов в месяц, то средняя всей группы сместится и окажется равной 6410 долларов, хотя никто из всей выборки (кроме одного человека) реально не получает такой суммы.

Понятно что аналогичное смещение, но в противоположную сторону можно получить и в том случае, если добавить в эту группу человека с очень маленьким годовым доходом.

Разброс выборки

Разброс (размахом ) выборки – разность между максимальной и минимальной величинами данного конкретного вариационного ряда. Обозначается буквой R.

Размах = максимальное значение - минимальное значение

Понятно, что чем сильнее варьирует измеряемый признак, тем больше величина R, и наоборот.

Однако может случиться так, что у двух выборочных рядов и средние, и размах совпадают, однако характер варьирования этих рядов будет различный Например, даны две выборки

Дисперсия

Дисперсия представляет собой наиболее часто использующуюся меру рассеяния случайной величины (переменной).

Дисперсия – среднее арифметическое квадратов отклонений значений переменной от ее среднего значения

Кроме степенных средних в статистике для относительной характеристики величины варьирующего признака и внутреннего строения рядов распределения пользуются структурными средними, которые представлены,в основном, модой и медианой .

Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:

Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот , а затем определяют, какое значение варианта приходится на нее. (Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:

М е = (n (число признаков в совокупности) + 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:

Пример . Найти моду и медиану.

Решение :
В данном примере модальный интервал находится в пределах возрастной группы 25-30 лет, так как на этот интервал приходится наибольшая частота (1054).

Рассчитаем величину моды:

Это значит что модальный возраст студентов равен 27 годам.

Вычислим медиану. Медианный интервал находится в возрастной группе 25-30 лет, так как в пределах этого интервала расположена варианта, которая делит совокупность на две равные части (Σf i /2 = 3462/2 = 1731). Далее подставляем в формулу необходимые числовые данные и получаем значение медианы:

Это значит что одна половина студентов имеет возраст до 27,4 года, а другая свыше 27,4 года.

Кроме моды и медианы могут быть использованы такие показатели, как квартили, делящие ранжированный ряд на 4 равные части, децили -10 частей и перцентили — на 100 частей.

Среднее арифметическое ряда чисел – это сумма данных чисел, поделенная на количество слагаемых.

Среднее арифметическое называют средним значением числового ряда.

Пример : Найдем среднее арифметическое чисел 2, 6, 9, 15.

Решение. У нас четыре числа. Значит, надо их сумму разделить на 4. Это и будет среднее арифметическое данных чисел:
(2 + 6 + 9 + 15) : 4 = 8.

Среднее геометрическое ряда чисел – это корень n-й степени из произведения этих чисел.

Пример : Найдем среднее геометрическое чисел 2, 4, 8.

Решение. У нас три числа. Значит, надо найти корень третьей степени из их произведения. Это и будет среднее геометрическое данных чисел:

3 √ 2 · 4 · 8 = 3 √64 = 4

Размах рядачисел – это разность между наибольшим и наименьшим из этих чисел.

Пример : Найти размах чисел 2, 5, 8, 12, 33.

Решение : Наибольшее число здесь 33, наименьшее 2. Значит, размах составляет 31:

Мода ряда чисел – это число, которое встречается в данном ряду чаще других.

Пример : Найти моду ряда чисел 1, 7, 3, 8, 7, 12, 22, 7, 11, 22, 8.

Решение : Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.

Медиана.

В упорядоченном ряде чисел:

Медиана нечетного количества чисел – это число, записанное посередине.

Пример : В ряде чисел 2, 5, 9, 15, 21 медианой является число 9, находящееся посередине.

Медиана четного количества чисел – это среднее арифметическое двух чисел, находящихся посередине.

Пример : Найти медиану чисел 4, 5, 7, 11, 13, 19.

Решение : Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел:

(7 + 11) : 2 = 9.

Число 9 и является медианой данного ряда чисел.

В неупорядоченном ряде чисел:

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.

Пример 1 : Найдем медиану произвольного ряда чисел 5, 1, 3, 25, 19, 17, 21.

Решение : Располагаем числа в порядке возрастания:

1, 3, 5, 17 , 19, 21, 25.

Посередине оказывается число 17. Оно и является медианой данного ряда чисел.

Пример 2 : Добавим к нашему произвольному ряду чисел еще одно число, чтобы ряд стал четным, и найдем медиану:

5, 1, 3, 25, 19, 17, 21, 19.

Решение : Снова выстраиваем упорядоченный ряд:

1, 3, 5, 17 , 19 , 19, 21, 25.

Посередине оказались числа 17 и 19. Находим их среднее значение:

(17 + 19) : 2 = 18.

Число 18 и является медианой данного ряда чисел.

Наряду со средними величинами в качестве статистических характеристик вариационных рядов распределения рассчитываются структурные средние – мода и медиана .
Мода (Mo) представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой, т.е. мода – значение признака, встречающееся чаще всего.
Медианой (Me) называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности, т.е. медиана – центральное значение вариационного ряда.
Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины ∑|x i - Me|=min.

Определение моды и медианы по несгруппированным данным

Рассмотрим определение моды и медианы по несгруппированным данным . Предположим, рабочие бригады, состоящей из 9 человек, имеют следующие тарифные разряды: 4 3 4 5 3 3 6 2 6 . Так как в данной бригаде больше всего рабочих 3-го разряда, этот тарифный разряд будет модальным. Mo = 3.
Для определения медианы необходимо провести ранжирование: 2 3 3 3 4 4 5 6 6 . Центральным в этом ряду является рабочий 4-го разряда, следовательно, данный разряд и будет медианным. Если ранжированный ряд включает четное число единиц, то медиана определяется как средняя из двух центральных значений.
Если мода отражает наиболее распространенный вариант значения признака, то медиана практически выполняет функции средней для неоднородной, не подчиняющейся нормальному закону распределения совокупности. Проиллюстрируем ее познавательное значение следующим примером.
Допустим, нам необходимо дать характеристику среднего дохода группы людей, насчитывающей 100 человек, из которых 99 имеют доходы в интервале от 100 до 200 долларов в месяц, а месячные доходы последнего составляют 50000 долларов (табл. 1).
Таблица 1 - Месячные доходы исследуемой группы людей. Если воспользоваться средней арифметической, то получим средний доход, равный примерно 600 – 700 долларов, который имеет мало общего с доходами основной части группы. Медиана же, равная в данном случае Me = 163 доллара, позволит дать объективную характеристику уровня доходов 99 % данной группы людей.
Рассмотрим определение моды и медианы по сгруппированным данным (рядам распределения).
Предположим, распределение рабочих всего предприятия в целом по тарифному разряду имеет следующий вид (табл. 2).
Таблица 2 - Распределение рабочих предприятия по тарифному разряду

Расчет моды и медианы для дискретного ряда

Расчет моды и медианы для интервального ряд

Расчет моды и медианы для вариационного ряда

Определение моды по дискретному вариационному ряду

Используется построенный ранее ряд значений признака, отсортированных по величине. Если объем выборки нечетный, берем центральное значение; если объем выборки четный, берем среднее арифметическое двух центральных значений.
Определение моды по дискретному вариационному ряду : наибольшую частоту (60 человек) имеет 5-й тарифный разряд, следовательно, он и является модальным. Mo = 5.
Для определения медианного значения признака по следующей формуле находят номер медианной единицы ряда (N Me): , где n - объем совокупности.
В нашем случае: .
Полученное дробное значение, всегда имеющее место при четном числе единиц совокупности, указывает, что точная середина находится между 95 и 96 рабочими. Необходимо определить, к какой группе относятся рабочие с этими порядковыми номерами. Это можно сделать, рассчитав накопленные частоты. Рабочих с этими номерами нет в первой группе, где всего лишь 12 человек, нет их и во второй группе (12+48=60). 95-й и 96-й рабочие находятся в третьей группе (12+48+56=116), следовательно, медианным является 4-й тарифный разряд.

Расчет моды и медианы в интервальном ряду

В отличие от дискретных вариационных рядов определение моды и медианы по интервальным рядам требует проведения определенных расчетов на основе следующих формул:
, (5.6)
где x 0 – нижняя граница модального интервала (модальным называется интервал, имеющий наибольшую частоту);
i – величина модального интервала;
f Mo – частота модального интервала;
f Mo -1 – частота интервала, предшествующего модальному;
f Mo +1 – частота интервала, следующего за модальным.
(5.7)
где x 0 – нижняя граница медианного интервала (медианным называется первый интервал, накопленная частота которого превышает половину общей суммы частот);
i – величина медианного интервала;
S Me -1 – накопленная интервала, предшествующего медианному;
f Me – частота медианного интервала.
Проиллюстрируем применение этих формул, используя данные табл. 3.
Интервал с границами 60 – 80 в данном распределении будет модальным, т.к. он имеет наибольшую частоту. Использую формулу (5.6), определим моду:

Для установления медианного интервала необходимо определять накопленную частоту каждого последующего интервала до тех пор, пока она не превысит половины суммы накопленных частот (в нашем случае 50 %) (табл. 5.11).
Установили, что медианным является интервал с границами 100 – 120 тыс. руб. Определим теперь медиану:

Таблица 3 - Распределение населения РФ по уровню среднедушевых номинальных денежных доходов в марте 1994г.
Группы по уровню среднедушевого месячного дохода, тыс. руб. Удельный вес населения, %
До 20 1,4
20 – 40 7,5
40 – 60 11,9
60 – 80 12,7
80 – 100 11,7
100 – 120 10,0
120 – 140 8,3
140 –160 6,8
160 – 180 5,5
180 – 200 4,4
200 – 220 3,5
220 – 240 2,9
240 – 260 2,3
260 – 280 1,9
280 – 300 1,5
Свыше 300 7,7
Итого 100,0

Таблица 4 - Определение медианного интервала
Таким образом, в качестве обобщенной характеристики значений определенного признака у единиц ранжированной совокупности могут быть использованы средняя арифметическая, мода и медиана.
Основной характеристикой центра распределения является средняя арифметическая, для которой характерно то, что все отклонения от нее (положительные и отрицательные) в сумме равняются нулю. Для медианы характерно, что сумма отклонений от нее по модулю является минимальной, а мода представляет собой значение признака, которое наиболее часто встречается.
Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. В симметричных распределениях все три характеристики совпадают. Чем больше расхождение между модой и средней арифметической, тем более асимметричен ряд. Для умеренно асимметричных рядов разность между модой и средней арифметической примерно в три раза превышает разность между медианой и средней, т.е.:
|Mo –`x| = 3 |Me –`x|.

Определение моды и медианы графическим методом

Моду и медиану в интервальном ряду можно определить графически . Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Из точки их пересечения опускаем перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения (рис. 5.3).


Рис. 5.3. Графическое определение моды по гистограмме.


Рис. 5.4. Графическое определение медианы по кумуляте
Для определения медианы из точки на шкале накопленных частот (частостей), соответствующей 50 %, проводится прямая, параллельная оси абсцисс до пересечения с кумулятой. Затем из точки пересечения опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Квартили, децили, перцентили

Аналогично с нахождением медианы в вариационных рядах распределения можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, например, можно найти значение признака у единиц, делящих ряд на четыре равные части, на 10 или на 100 частей. Эти величины называются «квартили», «децили», «перцентили».
Квартили представляют собой значение признака, делящее ранжированную совокупность на 4 равновеликие части.
Различают квартиль нижний (Q 1), отделяющий ¼ часть совокупности с наименьшими значениями признака, и квартиль верхний (Q 3), осекающий ¼ часть с наибольшими значениями признака. Это означает, что 25 % единиц совокупности будут меньше по величине Q 1 ; 25 % единиц будут заключены между Q 1 и Q 2 ; 25 % - между Q 2 и Q 3 , а остальные 25 % превосходят Q 3 . Средним квартилем Q 2 является медиана.
Для расчета квартилей по интервальному вариационному ряду используются формулы:
, ,
где x Q 1 – нижняя граница интервала, содержащего нижний квартиль (интервал определяется по накопленной частоте, первой превышающей 25 %);
x Q 3 – нижняя граница интервала, содержащего верхний квартиль (интервал определяется по накопленной частоте, первой превышающей 75 %);
i – величина интервала;
S Q 1-1 – накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль;
S Q 3-1 – накопленная частота интервала, предшествующего интервалу, содержащему верхний квартиль;
f Q 1 – частота интервала, содержащего нижний квартиль;
f Q 3 – частота интервала, содержащего верхний квартиль.
Рассмотрим расчет нижнего и верхнего квартилей по данным табл. 5.10. Нижний квартиль находится в интервале 60 – 80, накопленная частота которого равна 33,5 %. Верхний квартиль лежит в интервале 160 – 180 с накопленной частотой 75,8 %. С учетом этого получим:
,
.
Кроме квартилей в вариационных радах распределения могут определяться децили – варианты, делящие ранжированный вариационный ряд на десять равных частей. Первый дециль (d 1) делит совокупность в соотношении 1/10 к 9/10, второй дециль (d 1) – в соотношении 2/10 к 8/10 и т.д.
Вычисляются они по формулам:
, .
Значения признака, делящие ряд на сто частей, называются перцентилями. Соотношения медианы, квартилей, децилей и перцентилей представлены на рис. 5.5.

Цели: дать понятия, алгоритмы нахождения среднего арифметического и медианы, размаха и моды ряда чисел, показать значимость этой темы в практической деятельности человека; приобретение практических навыков выполнения этих заданий; повышение уровня математической подготовки, предъявляемой новыми стандартами.

  • вооружить учащихся системой знаний по теме "Определение вероятности событий, среднего арифметического и медианы набора чисел";
  • сформировать навыки применения данных знаний при решении разнообразных задач различной сложности;
  • подготовить учащихся к сдаче ГИА;
  • сформировать навыки самостоятельной работы.

Ход урока

1. Теоретическая часть.

1). Нахождение вероятности событий.

В повседневной жизни, в практической и научной деятельности часто наблюдают те или иные явления, проводят определенные эксперименты.

В процессе наблюдения или эксперимента приходится встречаться с некоторыми случайными событиями , т. е. такими событиями, которые могут произойти или не произойти. Например, выпадение орла или решки при подбрасывании монеты, поражение мишени или промах при выстреле, выигрыш спортивной команды во встрече с соперником, проигрыш или ничейный результат- все это случайные события.

Закономерности случайных событий изучает специальный раздел математики, который называется теорией вероятностей . Методы теории вероятностей применяются во многих областях знаний.

Зарождение теории вероятностей произошло в поисках ответа на вопрос: как часто наступает то, или иное событие в большой серии происходящих в одинаковых условиях испытаний со случайными исходами.

Для того чтобы оценить вероятность интересующего нас события необходимо провести большое число опытов или наблюдений, и только после этого можно определить вероятность этого события.

Например, бросание игрального кубика. При бросании кубика шансы выпадения на его верхней грани каждого числа очков от 1 до 6 одинаковы. Говорят, что существует 6 равновозможных исходов опыта с бросанием кубика: выпадение 1,2,3,4,5, и 6 очков.

Исходы в этом опыте считают равновозможными, если шансы этих исходов одинаковы.

Исходы, при которых происходит некоторое событие, называются благоприятными исходами для этого события.

Определение: отношение числа благоприятных исходов N (A) события A к числу всех равновозможных исходов N этого события называется вероятностью события A.

Схема нахождения вероятности события.

Для нахождения вероятности случайного события A при проведении некоторого испытания следует:

  • найти число N всех равновозможных исходов данного испытания;
  • найти количество N(A) тех благоприятных исходов испытания, в которых наступает событие А;
  • найти отношение N(A)/N; это и есть вероятность события A

Например: 1 . В коробке лежат 10 красных, 7 желтых и 3 синих шара. Какова вероятность, что взятый наугад шар окажется желтым?

Решение. Равновозможные исходы- (10+7+3)=20

Благоприятные исходы-7

2. В коробке лежит 5 черных шаров. Какое наименьшее число белых шаров нужно положить в эту коробку, чтобы после этого вероятность наугад достать из коробки черный шар была не больше 0,15?

Решение: Пусть x-белые шары.

2) Определение и нахождение среднего арифметического и медианы ряда чисел.

Определение: средним арифметическим нескольких чисел называется число, равное отношению суммы этих чисел к их количеству.

Среднее арифметическое набора чисел x 1 ,x 2 ,x 3 ,x 4 ,x 5 принято обозначать x.

Например, среднее арифметическое пяти чисел запишется так:

X = (x 1 +x 2 +x 3 +x 4 +x 5)/5

Пример: найти среднюю оценку учащегося по математике, если за истекший период он получил: 3,4,4,5,3,2,4,3.

Решение: (3+4+4+5+3+2+4+3)/8=3,5

Определение: медианой называется число, разделяющее набор чисел на две части, равные по численности, так что с одной стороны от этого числа все значения больше медианы, а с другой меньше. Вместо "медиана" можно было бы сказать середина.

Схема нахождения медианы набора чисел:

Для нахождения медианы набора чисел следует:

  • упорядочить числовой набор (записать в порядке возрастания);
  • одновременно зачеркиваем "самое большое" и "самое маленькое" числа данного набора чисел до тех пор, пока не останется одно число или два числа;
  • если останется одно число, то оно и есть медиана (для нечетного набора чисел);
  • если останется два числа, то медианой будет среднее арифметическое двух оставшихся чисел (для четного набора чисел).

Медиану принято обозначать буквой М.

Пример: найти медиану набора чисел: 9,3,1,5,7.

Решение: запишем числа в порядке возрастания: 1,3,5,7,9.

Вычеркнем 1 и 9, 3 и 7. Оставшееся число 5 и есть медиана. М=5

Пример: найти медиану набора чисел 2,3,3,5,7,10.

Решение: вычеркнем 2 и 10, 3 и 7. Для нахождения М нужно: (3+5)/2= 4. М=4

Определение и нахождение размаха и моды.

Определение: размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.

Размах ряда находят, когда хотят определить, как велик разброс данных в ряду.

Определение: модой ряда чисел называется число, которое встречается в данном ряду чаще других.

Ряд чисел может иметь более одной моды, а может не иметь моды совсем.

Пример: На уроке физкультуры 14 школьников прыгали в высоту, а учитель записывал их результаты. Получился такой ряд данных (в см):

125, 110, 130, 125, 120, 130, 140, 125, 110, 130, 120, 125, 120, 125.

Найти медиану, размах и моду измерения.

Решение: выпишем все варианты измерения в порядке возрастания, разделяя пробелами группы одинаковых результатов:

110, 110, 120, 120, 120, 125, 125, 125, 125, 125, 130, 130, 130, 140.

Размах измерения равен 140-110=30.

125-встретилось наибольшее число раз, т. е. 5 раз; это мода измерения.

2. Практическая часть.

1). Задачи для самостоятельного решения на теорию вероятностей.

1. На 100 электрических лампочек в среднем приходится 4 бракованных. Какова вероятность, что взятая наугад лампочка окажется исправной? Ответ: 0,96.

2. На 400 компакт-дисков в среднем приходится 8 бракованных. Какова вероятность, что взятый наугад компакт-диск окажется исправным? Ответ: 0,98.

3. 17 точек из 50 покрашены в синий цвет, а 13 точек из оставшихся покрашены в оранжевый цвет. Какова вероятность того, что случайно выбранная точка окажется окрашенной? Ответ: 0,6.

4. Из слова "математика" случайным образом выбирается одна буква. Какова вероятность, что выбранная буква встречается в этом слове только 1 раз? Ответ: 0,3.

5. Из слова "аттестация" случайным образом выбирается одна буква. Какова вероятность, что выбранная буква окажется буквой "а"? Ответ: 0,2

6. Из 30девятиклассников 4 выбрали экзамен по физике, 12 - по обществознанию, 8- по иностранному языку, а остальные по литературе. Какова вероятность, что выбранный ученик будет сдавать экзамен по литературе. Ответ: 0,2.

7. Контрольная работа по математике состоит из 15 задач: 4 задачи по геометрии, 2 задачи по теории вероятностей, остальные по алгебре. Ученик ошибся в одной задаче. Какова вероятность, что ученик ошибся в задаче по алгебре? Ответ: 0,6.

8. На 1000 автомобилей, выпущенных в 2007-2009 г. г., 150 имеют дефект тормозной системы. Какова вероятность купить неисправную машину? Ответ: 0,15.

9. В соревнованиях по художественной гимнастике участвуют: 3 гимнастки из России, 3 гимнастки из Украины и 4 гимнастки из Белоруссии. Порядок выступления определятся жеребьевкой. Найдите вероятность того, что первой будет выступать гимнастка из России. Ответ 0,3

10. На чемпионате по художественной гимнастике выступает 18 гимнасток, среди них 3 гимнастки из России, 2 гимнастки из Китая. Порядок выступления определяется жеребьевкой. Найдите вероятность того, что последней будет выступать гимнастка или из России, или из Китая? Ответ: 5/18.

11. Из класса, в котором учатся 12 мальчиков и 8 девочек, выбирают по жребию 1 дежурного. Какова вероятность того, что это будет мальчик? Ответ: 0,6.

12. Одновременно бросают 2 монеты. С какой вероятностью на них выпадут 2 решки? Ответ 0,25.

2) Задачи на нахождение среднего арифметического и медианы, размаха и моды набора чисел.

Фрезеровщики бригады затратили на обработку одной детали разное время (в мин.), представленное в виде ряда данных: 40; 37; 35; 36; 32; 42; 32; 38; 32. На сколько медиана этого набора отличается от среднего арифметического? Ответ: 0.

В саду посадили 5 саженцев яблони, высота которых в сантиметрах следующая: 168, 13, 156, 165, 144. На сколько отличается среднее арифметическое этого набора чисел от его медианы? Ответ: 3, 8

Растущие в саду 6 деревьев груши дали урожай, масса которого (в кг) для каждого из деревьев следующая: 29, 35, 26, 28, 32, 36. На сколько отличается среднее арифметическое этого набора чисел от его медианы? Ответ: 0,5

Время обслуживания кассиром каждого из нескольких покупателей магазина образовало следующий ряд данных: 2 мин. 42 сек., 3мин. 2 сек., 3 имн. 7сек., 2 мин. 54 сек., 2 мин. 48 сек. Найдите среднее значение и медиану этого ряда данных. Ответ: 2 мин. 55 сек., 2 мин. 54 сек.

Время между семью звонками, поступившими в службу такси образовало следующий ряд данных: 34 сек., 45 сек., 1 мин. 16 сек., 38 сек., 43 сек., 52 сек. Найдите среднее значение и медиану этого ряда данных. Ответ: 48 сек., 44 сек.

Литература: Мордкович, А. Г. ,И. М. Смирновой. Учебнок для общеобразовательных учреждений (базовый уровень) - М.: Мнемозина, 2009. - 164 с.

  • Макарычев Ю. Н. Алгебра: элементы статистики и теории вероятностей: учебное пособие для учащихся 7-9 классов общеобразовательных учреждений / Ю. Н. Макарычев, Н. Г. Миндюк. Под ред. С. А. Теляковского - М.: Просвещение. - 2003.
  • Макарычев Ю. Н. , Миндюк Н. Г. Изучаем элементы статистики. // Математика в школе. - 2004. - №5.
  • Макарычев Ю. Н. , Миндюк Н. Г. Начальные сведения из теории вероятностей в школьном курсе алгебры. // Математика в школе. - 2004. - №7.
  • Мордкович А. Г, Семенов П. В. События. Вероятности. Статистическая обработка данных: дополнительные параграфы к курсу алгебры 7-9 кл. общеобразоват. Учреждений. - М.: Мнемозина, 2003.
  • О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы / В. А. Болотов // Математика в школе - 2003. - №9.
  • Ткачева М. В. Элементы статистики и вероятность: учебное пособие для учащихся 7-9 классов общеобразовательных учреждений / М. В. Ткачева, Н. Е. Федорова. - М.: Просвещение, 2004.
  • Федосеев В. Н. Элементы теории вероятностей для 7-9 классов средней школы / Математика в школе. -2002, №3
  • Студенецкая В. Н. Решение задач по статистике, комбинаторике и теории вероятностей 7-9 классы, Волгоград, Учитель, 2009.
  • Понравилась статья? Поделиться с друзьями: